Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Annu Rev Plant Biol ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38382908

Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Nature ; 617(7959): 132-138, 2023 05.
Article En | MEDLINE | ID: mdl-37076627

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.


Arabidopsis Proteins , Arabidopsis , Glucosinolates , Membrane Transport Proteins , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glucosinolates/metabolism , Homeostasis , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phloem/metabolism , Reproducibility of Results , Seeds/metabolism
3.
Nat Commun ; 14(1): 2128, 2023 04 14.
Article En | MEDLINE | ID: mdl-37059727

Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBE3 forms a central module with the phloem-specific SMXL5 protein for establishing the phloem developmental program in Arabidopsis thaliana. By protein interaction studies and phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins form a complex in nuclei of phloem stem cells where they promote a phloem-specific chromatin profile. This profile allows expression of OPS, BRX, BAM3, and CVP2 genes acting as mediators of phloem differentiation. Our findings demonstrate that OBE3/SMXL5 protein complexes establish nuclear features essential for determining phloem cell fate and highlight how a combination of ubiquitous and local regulators generate specificity of developmental decisions in plants.


Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/metabolism , Arabidopsis/metabolism , Membrane Proteins/metabolism , Cell Differentiation , Gene Expression Regulation, Plant
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34795057

Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Feeding Behavior/physiology , Herbivory/physiology , Plant Defense Against Herbivory/physiology , Plants/metabolism , Animals , Arabidopsis/metabolism , Glucosinolates/metabolism , Larva/metabolism , Plant Leaves/metabolism
5.
Plant Cell Environ ; 43(6): 1571-1583, 2020 06.
Article En | MEDLINE | ID: mdl-32275065

Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.


Arabidopsis/immunology , Arabidopsis/microbiology , Ascomycota/physiology , Disease Resistance , Glucosinolates/biosynthesis , Plant Diseases/microbiology , Arabidopsis Proteins/metabolism , Biological Transport , Indoles , Plant Epidermis/cytology , Recombinant Proteins/metabolism
6.
Mol Plant ; 12(11): 1474-1484, 2019 11 04.
Article En | MEDLINE | ID: mdl-31260813

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.


Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Glucosinolates/metabolism , Inflorescence/cytology , Phloem/cytology , Sulfur/metabolism , Arabidopsis/immunology , Inflorescence/metabolism , Models, Biological , Phloem/metabolism , Protein Transport
7.
Methods Mol Biol ; 2014: 17-27, 2019.
Article En | MEDLINE | ID: mdl-31197783

It is a universal feature of seed plants that their phloem consists of a continuous sieve-tube system throughout the plant that is highly pressurized by its sugar contents. Cellular continuity and the pressure flow, osmotically generated in the source leaves, allow the assimilates to reach all sinks organs. However, both phloem features, the cellular continuity and the high pressure, are challenges when fixing the phloem for transmission electron microscopy. With very few exceptions, the tissue preparation necessary for the fixation evokes rapid wound responses that eventually result in artifacts.This chapter describes the steps necessary to minimize development of artifacts in the phloem and includes preparation of fixatives, a dissection procedure that optimizes penetration of the fixatives and application to axial and lateral plant organs. Moreover, as alternative to the established fixation of fresh hand sections, we suggest a xylem-assisted perfusion fixation method for herbaceous plants. After the initial fixation, the subsequent dehydration, embedding, and ultrathin sectioning of the material follow routine procedures, which are briefly discussed, as is the orientation of samples for obtaining transverse and longitudinal phloem sections.


Artifacts , Microscopy, Electron, Transmission , Phloem/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Electron, Transmission/standards
8.
J Exp Bot ; 70(16): 4305-4317, 2019 08 19.
Article En | MEDLINE | ID: mdl-30976798

The phloem cap of Arabidopsis thaliana accumulates glucosinolates that yield toxic catabolites upon damage-induced hydrolysis. These defence compounds are stored in high concentrations in millimetre long S-cells. At early stages of development, S-cells initiate a process indicative of programmed cell death. How these cells are maintained in a highly turgescent state following this process is currently unknown. Here, we show that S-cells undergo substantial morphological changes during early differentiation. Vacuolar collapse and rapid clearance of the cytoplasm did not occur until senescence. Instead, smooth endoplasmic reticulum, Golgi bodies, vacuoles, and undifferentiated plastids were observed. Lack of chloroplasts indicates that S-cells depend on metabolite supply from neighbouring cells. Interestingly, TEM revealed numerous plasmodesmata between S-cells and neighbouring cells. Photoactivation of a symplasmic tracer showed coupling with neighbouring cells that are involved in glucosinolate synthesis. Hence, symplasmic transport might contribute to glucosinolate storage in S-cells. To investigate the fate of S-cells, we traced them in flower stalks from the earliest detectable stages to senescence. At late stages, S-cells were shown to deposit thick secondary cell walls and transform into phloem fibres. Thus, phloem fibres in the herbaceous plant Arabidopsis pass a pronounced phase of chemical defence during early stages of development.


Arabidopsis/metabolism , Glucosinolates/biosynthesis , Phloem/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/genetics , Plasmodesmata/genetics , Plasmodesmata/metabolism
9.
Physiol Plant ; 163(2): 138-154, 2018 Jun.
Article En | MEDLINE | ID: mdl-29194649

Glucosinolates constitute the primary defense metabolites in Arabidopsis thaliana (Arabidopsis). Indole and aliphatic glucosinolates, biosynthesized from tryptophan and methionine, respectively, are known to serve distinct biological functions. Although all genes in the biosynthetic pathways are identified, and it is known where glucosinolates are stored, it has remained elusive where glucosinolates are produced at the cellular and tissue level. To understand how the spatial organization of the different glucosinolate biosynthetic pathways contributes to their distinct biological functions, we investigated the localization of enzymes of the pathways under constitutive conditions and, for indole glucosinolates, also under induced conditions, by analyzing the spatial distribution of several fluorophore-tagged enzymes at the whole plant and the cellular level. We show that key steps in the biosynthesis of the different types of glucosinolates are localized in distinct cells in separate as well as overlapping vascular tissues. The presence of glucosinolate biosynthetic enzymes in parenchyma cells of the vasculature may assign new defense-related functions to these cell types. The knowledge gained in this study is an important prerequisite for understanding the orchestration of chemical defenses from site of synthesis to site of storage and potential (re)mobilization upon attack.


Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Glucosinolates/metabolism , Indoles/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics
...