Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Zool Res ; 45(3): 551-566, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38757223

RESUMEN

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Proto-Oncogénicas p21(ras) , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Carcinoma Hepatocelular/patología , Ratones , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Ratones Endogámicos C57BL , Humanos
2.
Sci Rep ; 13(1): 21501, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057444

RESUMEN

Polyethylene glycol-coated magnetic nanoparticles (PEGylated MNPs) have demonstrated prominent advantages in cancer diagnosis and hyperthermia therapy. However, there is currently lack of standard mode and sufficient toxicity data for determining the delayed risk of PEGylated MNPs. Nevertheless, the toxicity potentials, especially those associated with the oxidative stress, were ubiquitously reported. In this study, PEGylated MNPs and p-PEGylated MNPs were administrated to SD (Sprague Dawley) rats by single intravenously injection, and various toxicity indicators were monitored till 56 days post-administration for a comprehensive toxicity evaluation. We revealed that both nanoparticles could be rapidly cleared from plasma and enter tissues, such as, liver, kidneys and spleen, and p-PEGylated MNP is less prone to be accumulated in the tissues, indicating a lower toxicity risk. PEGylated MNPs were more likely to up-regulate the expression levels of Th2 type cytokines and trigger inflammatory pathways, but no related pathological change was found. Both MNPs are not mutagenic, while recoverable mild DNA damage associated with the presence of nanoparticles might also be observed. This study demonstrated a research approach for the non-clinical safety evaluation of nanoparticles. It also provided comprehensive valuable safety data for PEGylated and p-PEGylated MNPs, for promoting the clinical application and bio-medical translation of such MNPs with PEG modifications in the cancer diagnosis and therapy.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Ratas , Animales , Nanopartículas de Magnetita/uso terapéutico , Ratas Sprague-Dawley , Hígado , Polietilenglicoles
3.
Cancer Sci ; 114(1): 115-128, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36114822

RESUMEN

Vascular endothelial growth factor receptor 2 (VEGFR2)/KDR plays a critical role in tumor growth, diffusion, and invasion. The amino acid sequence homology of KDR between mouse and human in the VEGF ligand-binding domain was low, thus the WT mice could not be used to evaluate Abs against human KDR, and the lack of a suitable mouse model hindered both basic research and drug developments. Using the CRISPR/Cas9 technique, we successfully inserted different fragments of the human KDR coding sequence into the chromosomal mouse Kdr exon 4 locus to obtain an hKDR humanized mouse that can be used to evaluate the marketed Ab ramucirumab. In addition, the humanized mAb VEGFR-HK19 was developed, and a series of comparative assays with ramucirumab as the benchmark revealed that VEGFR-HK19 has higher affinity and superior antiproliferation activity. Moreover, VEGFR-HK19 selectively inhibited tumor growth in the hKDR mouse model but not in WT mice. The most important binding epitopes of VEGFR2-HK19 are D257, L313, and T315, located in the VEGF binding region. Therefore, the VEGFR2-HK19 Ab inhibits tumor growth by blocking VEGF-induced angiogenesis, inflammation, and promoting apoptosis. To our best knowledge, this novel humanized KDR mouse fills the gaps both in an animal model and the suitable in vivo evaluation method for developing antiangiogenesis therapies in the future, and the newly established humanized Ab is expected to be a drug candidate possibly benefitting tumor patients.


Asunto(s)
Anticuerpos Neutralizantes , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Anticuerpos Neutralizantes/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosforilación , Unión Proteica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular
4.
Viruses ; 14(8)2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-36016362

RESUMEN

Intensive efforts have been made to develop models of hRSV infection or disease using various animals. However, the limitations such as semi-permissiveness and short duration of infection have impeded their applications in both the pathogenesis of hRSV and therapeutics development. Here, we present a mouse model based on a Rag2 gene knockout using CRISPR/Cas9 technology. Rag2-/- mice sustained high viral loads upon intranasal inoculation with hRSV. The average peak titer rapidly reached 1 × 109.8 copies/g and 1c106 TCID50 in nasal cavity, as well as 1 × 108 copies/g and 1 × 105 TCID50 in the lungs up to 5 weeks. Mild interstitial pneumonia, severe bronchopneumonia, elevated cytokines and NK cells were seen in Rag2-/- mice. A humanized monoclonal antibody showed strong antiviral activity in this animal model, implying that Rag2-/- mice that support long-term stable infection are a useful tool for studying the transmission and pathogenesis of human RSV, as well as evaluating therapeutics.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón , Ratones , Virus Sincitial Respiratorio Humano/genética , Carga Viral
5.
J Toxicol Pathol ; 35(1): 25-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35221493

RESUMEN

Lymphoma is the third most common cancer diagnosed in children, and T-cell lymphoma has the worst prognosis based on clinical observations. To date, a lymphoma model with uniform penetrance has not yet been developed. In this study, we generated a p53 deficient mouse model by targeting embryonic stem cells derived from a C57BL/6J mouse strain. Homozygous p53 deficient mice exhibited a higher rate of spontaneous tumorigenesis, with a high spontaneous occurrence rate (93.3%) of malignant lymphoma. Because tumor models with high phenotypic consistency are currently needed, we generated a lymphoma model by a single intraperitoneal injection of 37.5 or 75 mg/kg N-methyl-N-nitrosourea to p53 deficient mice. Lymphoma and retinal degeneration occurred in 100% of p53 +/- mice administered with higher concentrations of N-methyl-N-nitrosourea, a much greater response than those of previously reported models. The main anatomic sites of lymphoma were the thymus, spleen, bone marrow, and lymph nodes. Both induced and spontaneous lymphomas in the thymus and spleen stained positive for CD3 antigen, and flow cytometry detected positive CD4 and/or CD8 cells. Based on our observations and previous data, we hypothesize that mice with a B6 background are prone to lymphomagenesis.

6.
Nanomaterials (Basel) ; 11(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685095

RESUMEN

As a widely applied nanomaterial, silver nanomaterials (AgNMs) have increased public concern about their potential adverse biological effects. However, there are few related researches on the long-term toxicity, especially on the reversibility of AgNMs in vivo. In the current study, this issue was tackled by exploring liver damage after an intravenous injection of silver nanorods with golden cores (Au@AgNRs) and its potential recovery in a relatively long term (8 w). After the administration of Au@AgNRs into rats, Ag was found to be rapidly cleared from blood within 10 min and mainly accumulated in liver as well as spleen until 8 w. All detected parameters almost displayed a two-stage response to Au@AgNRs administration, including biological markers, histological changes and metabolic variations. For the short-term (2 w) responses, some toxicological parameters (hematological changes, cytokines, liver damages etc.) significantly changed compared to control and AuNRs group. However, after a 6-week recovery, all abovementioned changes mostly returned to the normal levels in the Au@AgNRs group. These indicated that after a lengthy period, acute bioeffects elicited by AgNMs could be followed by the adaptive recovery, which will provide a novel and valuable toxicity mechanism of AgNMs for potential biomedical applications of AgNMs.

7.
Ann Transl Med ; 9(23): 1713, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35071407

RESUMEN

BACKGROUND: ssCART-19 cells with shRNA-IL-6 gene knockdown were subjected to a comprehensive safety evaluation, including efficacy, toxicity and biodistribution studies in NSG (PrkdcscidIL2rgtm1 /Bcgen) mice. METHODS: NSG mice were administered Raji-Luc and then singly dosed with ssCART-19 cells via intravenous infusion. ssCART-19 DNA fragments were quantified in different tissues by qPCR, and the optical intensity of Raji-Luc was determined for evaluate the efficacy of regular CAR-T and ssCART-19 cells. In toxicity study, clinical symptoms observation, body weight measurements, serum biochemical analysis, human cytokine detection, lymphocytes subsets quantification, necropsy and histopathological examination were performed. RESULTS: The ssCART-19 DNA was mainly concentrated in the liver within 3 hours, and was widely distributed in most of the organs/tissues for 4 weeks after administration. Chimeric antigen receptor gene modified T cells (CAR-Ts) were detected in the peripheral blood with a significant increase in number beginning at approximately 3 weeks. ssCART-19 administration resulted in increased of interferon-gamma (IFN-γ), tumor necrosis factor (TNF), interleukin-2 (IL-2), and IL-17A and decreased IL-10 and IL-6 levels. ssCART-19 inhibited the proliferation of Raji-Luc cells in tumor-bearing NSG mice, and reduced the incidence of lymphomas in the liver, kidneys and spleen. It alleviated clinical symptoms caused by tumor cell proliferation in treated animals. CONCLUSIONS: ssCART-19 prolongs the survival time of tumor-bearing mice without obvious risks of immunotoxicity and tumorigenicity. ssCART-19 DNA was found in the brains of treated animals, however no significant central nervous system toxicity was observed. These data were used to support an investigational new drug (IND) application of ssCART-19 for clinical trial in China.

8.
Inflammopharmacology ; 27(4): 773-780, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30276558

RESUMEN

Luteolin, an anti-inflammatory ingredient found in the Chinese herb Folium perillae, can inhibit not only the cyclic adenosine monophosphate (cAMP)-phosphodiesterases (PDEs) activity of neutrophils, but also the expression of lymphocyte function-associated antigen-1 in neutrophils, both of which result in a decrease in the adhesion between neutrophils and microvascular endothelial cells. However, the effect of luteolin on the cAMP-PDEs activity and expression of adhesion molecules in endothelial cells are not clear. In the present study, primary rat pulmonary microvascular endothelial cells and a lipopolysaccharide-induced rat acute pneumonia model were used to explore the role of luteolin on cAMP-PDEs activity, expression of adhesion molecules, and leukocyte infiltration. We demonstrate that rat pulmonary microvascular endothelial cells expressed high levels of cAMP-PDEs, specifically PDE4, and further luteolin exhibited dose-dependent inhibition on the activity of cAMP-PDEs or PDE4 in endothelial cells. Luteolin also had a significant inhibitory effect on the expression of vascular cell adhesion molecule (VCAM)-1, but not intracellular cell adhesion molecule (ICAM)-1 in microvascular endothelial cells. Further, we show that luteolin decreased the levels of soluble ICAM-1 (sICAM-1), but not soluble E-selectin in the serum of rats subjected to acute pneumonia. We also show that luteolin treatment decreased the wet/dry weight ratio of lung tissue and reduced the total number of serum leukocytes in a dose-dependent manner in a rat acute pneumonia model. In conclusion, these results demonstrate that luteolin suppresses inflammation, at least in part, through inhibiting both cAMP-PDEs or PDE4 activity and the expression of VCAM-1 (in vitro) and sICAM-1 (in vivo) in endothelial cells.


Asunto(s)
AMP Cíclico/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Luteolina/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Inflamación/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Ratas , Ratas Sprague-Dawley , Molécula 1 de Adhesión Celular Vascular/metabolismo
9.
J Med Primatol ; 47(2): 132-135, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29399828

RESUMEN

This report describes a suppurative meningitis in a young cynomolgus. The animal had neutrophil aggregation in the subarachnoid space and hemorrhage in bilateral adrenal glands. Staphylococcus was identified by FISH in brain. To our knowledge, this is the first case of staphylococcal meningitis with Waterhouse-Friderichsen syndrome in a cynomolgus monkey.


Asunto(s)
Macaca fascicularis , Enfermedades de los Monos/diagnóstico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/aislamiento & purificación , Síndrome de Waterhouse-Friderichsen/veterinaria , Animales , Encéfalo/microbiología , Diagnóstico Diferencial , Masculino , Enfermedades de los Monos/patología , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/patología , Síndrome de Waterhouse-Friderichsen/diagnóstico , Síndrome de Waterhouse-Friderichsen/patología
10.
Yi Chuan ; 36(1): 30-40, 2014 Jan.
Artículo en Chino | MEDLINE | ID: mdl-24846916

RESUMEN

The common fruit fly, Drosophila melanogaster, has been used to study human disease as a model organism for many years. Many basic biological, physiological, and neurological properties are conserved between mammals and fly. Moreover, Drosophila melanogaster has its unique advantage as a model organism. Recent studies showed that the high level of signaling pathway conservation in tumorigenesis between fly and human and its feasible genetic operation make fly an effective model for oncology research. Numerous research findings showed Drosophila melanogaster was an ideal model for studying the molecular mechanisms of tumorigenesis, invasion and metastasis. This review mainly focuses on the advantages of Drosophila melanogaster in cancer research, established models used for the research of specific cancers and prospective research direction of oncology. It is hoped that this paper can provide insight for cancer research and development of anti-cancer drugs.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Neoplasias , Proyectos de Investigación , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...