Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 18(11): 2443-2448, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282475

RESUMEN

Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.

2.
Diagn Interv Radiol ; 29(3): 555-560, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37129301

RESUMEN

PURPOSE: The purpose of this study was to evaluate the effect of outside-field-of-view (FOV) lead shielding on the entrance surface dose (ESD) of the breast on an anthropomorphic X-ray phantom for a variety of axial skeleton X-ray examinations. METHODS: Using an anthropomorphic phantom and radiation dosimeter, the ESD of the breast was measured with and without outside-FOV shielding in anterior-posterior (AP) abdomen, AP cervical spine, occipitomental 30° (OM30) facial bones, AP lumbar spine, and lateral lumbar spine radiography. The effect of several exposure parameters, including a low milliampere-seconds technique, grid use, automatic exposure control use, wraparound lead (WAL) use, trolley use, and X-ray table use, on the ESD of the breast with and without outside-FOV shielding was investigated. The mean ESD (µSv) and standard deviation for each radiographic protocol were calculated. A one-tailed Student's t-test was carried out to evaluate whether ESD to the breast was reduced with the use of outside-FOV shielding. RESULTS: A total of 920 breast ESD measurements were recorded across the different protocol parameters. The largest decrease in mean ESD of the breast with outside-FOV shielding was 0.002 µSv (P = 0.084), recorded in the AP abdomen on the table with a grid, OM30 on the table with a grid, OM30 standard protocol on the trolley, and OM30 on the trolley with WAL protocols. This decrease was found to be statistically non-significant. CONCLUSION: This study found no significant decrease in the ESD of the breast with the use of outside-FOV shielding for the AP abdomen, AP cervical spine, OM30 facial bones, AP lumbar spine, or lateral lumbar spine radiography across a range of protocols.


Asunto(s)
Vértebras Lumbares , Tórax , Humanos , Rayos X , Dosis de Radiación , Radiografía , Fantasmas de Imagen
3.
Nutrients ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049396

RESUMEN

Maternal dietary levels of one-carbon (1C) metabolites (folic acid and choline) during pregnancy play a vital role in neurodevelopment. However, the impact of maternal dietary deficiencies on offspring stroke outcomes later in life remains undefined. The aim of this study was to investigate the role of maternal dietary deficiencies in folic acid and choline on ischemic stroke outcomes in middle-aged offspring. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. At 10 months of age ischemic stroke was induced in male and female offspring. Stroke outcome was assessed by measuring motor function and brain tissue. There was no difference in offspring motor function; however, sex differences were present. In brain tissue, maternal dietary deficiency increased ischemic damage volume and offspring from deficient mothers had reduced neurodegeneration and neuroinflammation within the ischemic region. Furthermore, there were changes in plasma 1C metabolites as a result of maternal diet and sex. Our data indicate that maternal dietary deficiencies do not impact offspring behavior after ischemic stroke but do play a role in brain histology and one-carbon metabolite levels in plasma. Additionally, this study demonstrates that the sex of mice plays an important role in stroke outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Embarazo , Femenino , Masculino , Ratones , Animales , Ácido Fólico , Colina/farmacología , Lactancia , Inflamación , Suplementos Dietéticos
4.
Nanoscale Adv ; 5(1): 208-219, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36605807

RESUMEN

The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA