Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Med (Berl) ; 99(8): 1151-1171, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34018016

RESUMEN

Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. KEY MESSAGES: LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adipocitos/metabolismo , Metabolismo Energético , Grasa Intraabdominal/metabolismo , Proteínas con Dominio LIM/genética , Obesidad/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Grasa Intraabdominal/citología , Proteínas con Dominio LIM/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Obesidad/etiología , Oxidación-Reducción , Fosforilación Oxidativa , PPAR gamma/metabolismo , Unión Proteica
2.
Sci Rep ; 7: 40881, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102348

RESUMEN

Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors, however, the underlying molecular mechanisms remain unclear. Here, we used an unbiased transcriptomics approach to identify the earliest molecular underpinnings occuring in adipose precursors following a brief HFD in mice. Our analysis identifies Heme Oxygenase-1 (HO-1) as strongly and selectively being upregulated in the adipose precursor fraction of WAT, upon high-fat diet (HFD) feeding. Specific deletion of HO-1 in adipose precursors of Hmox1fl/flPdgfraCre mice enhanced HFD-dependent visceral adipose precursor proliferation and differentiation. Mechanistically, HO-1 reduces HFD-induced AKT2 phosphorylation via ROS thresholding in mitochondria to reduce visceral adipose precursor proliferation. HO-1 influences adipogenesis in a cell-autonomous way by regulating events early in adipogenesis, during the process of mitotic clonal expansion, upstream of Cebpα and PPARγ. Similar effects on human preadipocyte proliferation and differentiation in vitro were observed upon modulation of HO-1 expression. This collectively renders HO-1 as an essential factor linking extrinsic factors (HFD) with inhibition of specific downstream molecular mediators (ROS &AKT2), resulting in diminished adipogenesis that may contribute to hyperplastic adipose tissue expansion.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Hemo-Oxigenasa 1/metabolismo , Obesidad/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Dieta Alta en Grasa , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , PPAR gamma/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Cell Metab ; 18(1): 62-74, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823477

RESUMEN

Increased visceral fat is associated with a high risk of diabetes and metabolic syndrome and is in part caused by excessive glucocorticoids (GCs). However, the molecular mechanisms remain undefined. We now identify the GC-dependent gene LIM domain only 3 (LMO3) as being selectively upregulated in a depot-specific manner in human obese visceral adipose tissue, localizing primarily in the adipocyte fraction. Visceral LMO3 levels were tightly correlated with expression of 11ß-hydroxysteroid dehydrogenase type-1 (HSD11B1), the enzyme responsible for local activation of GCs. In early human adipose stromal cell differentiation, GCs induced LMO3 via the GC receptor and a positive feedback mechanism involving 11ßHSD1. No such induction was observed in murine adipogenesis. LMO3 overexpression promoted, while silencing of LMO3 suppressed, adipogenesis via regulation of the proadipogenic PPARγ axis. These results establish LMO3 as a regulator of human adipogenesis and could contribute a mechanism resulting in visceral-fat accumulation in obesity due to excess glucocorticoids.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adipogénesis/fisiología , Grasa Intraabdominal/fisiología , Proteínas con Dominio LIM/fisiología , Obesidad/fisiopatología , Regulación hacia Arriba/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Adipocitos/patología , Adipogénesis/genética , Adulto , Animales , Estudios de Casos y Controles , Diferenciación Celular/fisiología , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Femenino , Glucocorticoides/fisiología , Humanos , Grasa Intraabdominal/patología , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones SCID , Persona de Mediana Edad , Obesidad/patología , PPAR gamma/fisiología , Regulación hacia Arriba/genética
4.
Mol Cancer ; 9: 200, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20667089

RESUMEN

BACKGROUND: Heme Oxygenase-1 (HO-1) is expressed in many cancers and promotes growth and survival of neoplastic cells. Recently, HO-1 has been implicated in tumor cell invasion and metastasis. However, the molecular mechanisms underlying these biologic effects of HO-1 remain largely unknown. To identify a common mechanism of action of HO-1 in cancer, we determined the global effect of HO-1 on the transcriptome of multiple tumor entities and identified a universal HO-1-associated gene expression signature. RESULTS: Genome-wide expression profiling of Heme Oxygenase-1 expressing versus HO-1 silenced BeWo choriocarcinoma cells as well as a comparative meta-profiling of the preexisting expression database of 190 human tumors of 14 independent cancer types led to the identification of 14 genes, the expression of which correlated strongly and universally with that of HO-1 (P = 0.00002). These genes included regulators of cell plasticity and extracellular matrix (ECM) remodeling (MMP2, ADAM8, TGFB1, BGN, COL21A1, PXDN), signaling (CRIP2, MICB), amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2 and HSD17B1), protein stabilization (IFI30), and phosphorylation (ALPPL2). We selected PXDN, an adhesion molecule involved in ECM formation, for further analysis and functional characterization. Immunofluorescence and Western blotting confirmed the positive correlation of expression of PXDN and HO-1 in BeWo cancer cells as well as co-localization of these two proteins in invasive extravillous trophoblast cells. Modulation of HO-1 expression in both loss-of and gain-of function cell models (BeWo and 607B melanoma cells, respectively) demonstrated a direct relationship of HO-1 expression with cell adhesion to Fibronectin and Laminin coated wells. The adhesion-promoting effects of HO-1 were dependent on PXDN expression, as loss of PXDN in HO-1 expressing BeWo and 607B cells led to reduced cell attachment to Laminin and Fibronectin coated wells. CONCLUSIONS: Collectively, our results show that HO-1 expression determines a distinct 'molecular signature' in cancer cells, which is enriched in genes associated with tumorigenesis. The protein network downstream of HO-1 modulates adhesion, signaling, transport, and other critical cellular functions of neoplastic cells and thus promotes tumor cell growth and dissemination.


Asunto(s)
Adhesión Celular , Perfilación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/metabolismo , Neoplasias/genética , Secuencia de Bases , Cartilla de ADN , Técnicas de Silenciamiento del Gen , Hemo Oxigenasa (Desciclizante)/genética , Humanos , Neoplasias/enzimología , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...