Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 610(7933): 652-655, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224390

RESUMEN

The general-relativistic phenomenon of spin-induced orbital precession has not yet been observed in strong-field gravity. Gravitational-wave observations of binary black holes (BBHs) are prime candidates, as we expect the astrophysical binary population to contain precessing binaries1,2. Imprints of precession have been investigated in several signals3-5, but no definitive identification of orbital precession has been reported in any of the 84 BBH observations so far5-7 by the Advanced LIGO and Virgo detectors8,9. Here we report the measurement of strong-field precession in the LIGO-Virgo-Kagra gravitational-wave signal GW200129. The binary's orbit precesses at a rate ten orders of magnitude faster than previous weak-field measurements from binary pulsars10-13. We also find that the primary black hole is probably highly spinning. According to current binary population estimates, a GW200129-like signal is extremely unlikely, and therefore presents a direct challenge to many current binary-formation models.

2.
Phys Rev Lett ; 120(16): 161102, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756952

RESUMEN

Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

3.
Phys Rev Lett ; 113(15): 151101, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375697

RESUMEN

The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.

4.
Phys Rev Lett ; 98(23): 231101, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17677893

RESUMEN

Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.

5.
Phys Rev Lett ; 98(9): 091101, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17359144

RESUMEN

When unequal-mass black holes merge, the final black hole receives a kick due to the asymmetric loss of linear momentum in the gravitational radiation emitted during the merger. The magnitude of this kick has important astrophysical consequences. Recent breakthroughs in numerical relativity allow us to perform the largest parameter study undertaken to date in numerical simulations of binary black-hole inspirals. We study nonspinning black-hole binaries with mass ratios from q=M1/M2=1 to q=0.25 (eta=q/(1+q)2 from 0.25 to 0.16). We accurately calculate the velocity of the kick to within 6%, and the final spin of the black holes to within 2%. A maximum kick of 175.2+/-11 km s(-1) is achieved for eta=0.195+/-0.005.

6.
Phys Rev Lett ; 99(24): 241102, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18233435

RESUMEN

Significant advances in numerical simulations of black-hole binaries have recently been achieved using the puncture method. We examine how and why this method works by evolving a single black hole. The coordinate singularity and hence the geometry at the puncture are found to change during evolution, from representing an asymptotically flat end to being a cylinder. We construct an analytic solution for the stationary state of a black hole in spherical symmetry that matches the numerical result and demonstrates that the evolution is not dominated by artefacts at the puncture but indeed finds the analytical result.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...