Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 139(7): 1439-1448, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30707899

RESUMEN

Basal cell carcinomas (BCCs) rely on Hedgehog (HH) pathway growth signal amplification by the microtubule-based organelle, the primary cilium. Despite naive tumor responsiveness to Smoothened inhibitors (Smoi), resistance in advanced tumors remains common. Although the resistant BCCs usually maintain HH pathway activation, squamous cell carcinomas with Ras/MAPK pathway activation also arise, and the molecular basis of tumor type and pathway selection are still obscure. Here, we identify the primary cilium as a critical determinant controlling tumor pathway switching. Strikingly, Smoothened inhibitor-resistant BCCs have an increased mutational load in ciliome genes, resulting in reduced primary cilia and HH pathway activation compared with naive or Gorlin syndrome patient BCCs. Gene set enrichment analysis of resistant BCCs with a low HH pathway signature showed increased Ras/MAPK pathway activation. Tissue analysis confirmed an inverse relationship between primary cilia presence and Ras/MAPK activation, and primary cilia removal in BCCs potentiated Ras/MAPK pathway activation. Moreover, activating Ras in HH-responsive cell lines conferred resistance to both canonical (vismodegib) and noncanonical (atypical protein kinase C and MRTF inhibitors) HH pathway inhibitors and conferred sensitivity to MAPK inhibitors. Our results provide insights into BCC treatment and identify the primary cilium as an important lineage gatekeeper, preventing HH-to-Ras/MAPK pathway switching.


Asunto(s)
Síndrome del Nevo Basocelular/metabolismo , Carcinoma Basocelular/metabolismo , Cilios/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas ras/metabolismo , Anilidas/uso terapéutico , Antineoplásicos/uso terapéutico , Síndrome del Nevo Basocelular/genética , Síndrome del Nevo Basocelular/patología , Carcinogénesis , Carcinoma Basocelular/genética , Carcinoma Basocelular/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Mutación/genética , Piridinas/uso terapéutico , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
2.
J Neurochem ; 137(6): 939-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953146

RESUMEN

Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and bundling, suppressing microtubule shortening) and pathological tau action (poisoning of oligomeric complexes).


Asunto(s)
Microtúbulos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Dimerización , Humanos , Espectrometría de Masas , Microscopía de Fuerza Atómica , Modelos Biológicos , Péptidos/química , Unión Proteica , Proteínas tau/genética
3.
Curr Biol ; 25(23): 3110-8, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26585277

RESUMEN

The intrinsic (mitochondrial) apoptotic pathway is a conserved cell death program crucial for eliminating superfluous, damaged, or incorrectly specified cells, and the multi-domain pro-death BCL-2 family proteins BAX and BAK are required for its activation. In response to internal damage or developmental signals, BAX and/or BAK permeabilize the mitochondrial outer membrane, resulting in cytochrome c release and activation of effector caspases such as Caspase-3 (Casp3). While the mitochondrial apoptotic pathway plays a critical role during late embryonic development in mammals, its role during early development remains controversial. Here, we show that Bax(-/-)Bak(-/-) murine embryonic stem cells (ESCs) display defects during the exit from pluripotency, both in culture and during teratoma formation. Specifically, we find that when ESCs are stimulated to differentiate, a subpopulation fails to do so and instead upregulates FAS in a p53-dependent manner to trigger Bax/Bak-dependent apoptosis. Blocking this apoptotic pathway prevents the removal of these poorly differentiated cells, resulting in the retention of cells that have not exited pluripotency. Taken together, our results provide further evidence for heterogeneity in the potential of ESCs to successfully differentiate and reveal a novel role for apoptosis in promoting efficient ESC differentiation by culling cells that are slow to exit pluripotency.


Asunto(s)
Apoptosis , Diferenciación Celular , Células Madre Embrionarias/fisiología , Mitocondrias/fisiología , Receptor fas/genética , Animales , Ratones , Transducción de Señal , Receptor fas/metabolismo
4.
Stem Cell Reports ; 4(3): 374-89, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25733019

RESUMEN

Embryonic stem cells (ESCs) have adopted an accelerated cell-cycle program with shortened gap phases and precocious expression of cell-cycle regulatory proteins, including cyclins and cyclin-dependent kinases (CDKs). We examined the effect of CDK inhibition on the pathways regulating proliferation and survival of ESCs. We found that inhibiting cyclin-dependent kinase 1 (CDK1) leads to activation of the DNA damage response, nuclear p53 stabilization, activation of a subset of p53 target genes including NOXA, and negative regulation of the anti-apoptotic protein MCL1 in human and mouse ESCs, but not differentiated cells. We demonstrate that MCL1 is highly expressed in ESCs and loss of MCL1 leads to ESC death. Finally, we show that clinically relevant CDK1 inhibitors prevent formation of ESC-derived tumors and induce necrosis in established ESC-derived tumors. Our data demonstrate that ES cells are uniquely sensitive to CDK1 inhibition via a p53/NOXA/MCL1 pathway.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Transformación Celular Neoplásica , Células Madre Embrionarias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Teratoma/etiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa CDC2/genética , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Ciclina A/genética , Ciclina B1/genética , Ciclina B2/genética , Daño del ADN/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN , Teratoma/patología , Proteína p53 Supresora de Tumor/genética
5.
Hepatology ; 59(1): 202-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23913442

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION: Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , MicroARNs/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Proteínas ras/metabolismo
6.
Science ; 338(6108): 818-22, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23042294

RESUMEN

The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to "ER stress," and activates IRE1α, an ER transmembrane kinase-endoribonuclease (RNase). IRE1α promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1α RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1α endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1α regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.


Asunto(s)
Caspasa 2/genética , Caspasa 2/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 3' , Animales , Apoptosis , Brefeldino A/farmacología , Sistema Libre de Células , Células Cultivadas , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Endorribonucleasas/química , Endorribonucleasas/genética , Activación Enzimática , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas Mutantes , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 109(17): E1019-27, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22474407

RESUMEN

A family of conserved serine/threonine kinases known as cyclin-dependent kinases (CDKs) drives orderly cell cycle progression in mammalian cells. Prior studies have suggested that CDK2 regulates S-phase entry and progression, and frequently shows increased activity in a wide spectrum of human tumors. Genetic KO/knockdown approaches, however, have suggested that lack of CDK2 protein does not prevent cellular proliferation, both during somatic development in mice as well as in human cancer cell lines. Here, we use an alternative, chemical-genetic approach to achieve specific inhibition of CDK2 kinase activity in cells. We directly compare small-molecule inhibition of CDK2 kinase activity with siRNA knockdown and show that small-molecule inhibition results in marked defects in proliferation of nontransformed cells, whereas siRNA knockdown does not, highlighting the differences between these two approaches. In addition, CDK2 inhibition drastically diminishes anchorage-independent growth of human cancer cells and cells transformed with various oncogenes. Our results establish that CDK2 activity is necessary for normal mammalian cell cycle progression and suggest that it might be a useful therapeutic target for treating cancer.


Asunto(s)
Transformación Celular Neoplásica , Quinasa 2 Dependiente de la Ciclina/fisiología , Oncogenes , Animales , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , ARN Interferente Pequeño
8.
J Exp Med ; 209(4): 679-96, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22430491

RESUMEN

Estrogen, progesterone, and HER2 receptor-negative triple-negative breast cancers encompass the most clinically challenging subtype for which targeted therapeutics are lacking. We find that triple-negative tumors exhibit elevated MYC expression, as well as altered expression of MYC regulatory genes, resulting in increased activity of the MYC pathway. In primary breast tumors, MYC signaling did not predict response to neoadjuvant chemotherapy but was associated with poor prognosis. We exploit the increased MYC expression found in triple-negative breast cancers by using a synthetic-lethal approach dependent on cyclin-dependent kinase (CDK) inhibition. CDK inhibition effectively induced tumor regression in triple-negative tumor xenografts. The proapoptotic BCL-2 family member BIM is up-regulated after CDK inhibition and contributes to this synthetic-lethal mechanism. These results indicate that aggressive breast tumors with elevated MYC are uniquely sensitive to CDK inhibitors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/fisiología , Proteína 11 Similar a Bcl2 , Neoplasias de la Mama/química , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Femenino , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Pronóstico , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-myc/análisis , Proteínas Proto-Oncogénicas c-myc/genética , Receptor ErbB-2/análisis , Receptores de Estrógenos/análisis , Receptores de Progesterona/análisis , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mol Cell ; 42(5): 624-36, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658603

RESUMEN

Multiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs. The sensitizing mutation also impaired a noncatalytic function of Cdk2 in restricting assembly of cyclin A with Cdk1, but this defect could be corrected by both inhibitory and noninhibitory analogs. This allowed either chemical rescue or selective antagonism of Cdk2 activity in vivo, to uncover a requirement in cell proliferation, and nonredundant, rate-limiting roles in restriction point passage and S phase entry.


Asunto(s)
Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Línea Celular , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Fase G1/efectos de los fármacos , Fase G1/fisiología , Humanos , Estructura Terciaria de Proteína , Fase S/efectos de los fármacos , Fase S/fisiología
10.
Nat Med ; 16(10): 1134-40, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20871609

RESUMEN

Inactivation of the p53 tumor suppressor pathway allows cell survival in times of stress and occurs in many human cancers; however, normal embryonic stem cells and some cancers such as neuroblastoma maintain wild-type human TP53 and mouse Trp53 (referred to collectively as p53 herein). Here we describe a miRNA, miR-380-5p, that represses p53 expression via a conserved sequence in the p53 3' untranslated region (UTR). miR-380-5p is highly expressed in mouse embryonic stem cells and neuroblastomas, and high expression correlates with poor outcome in neuroblastomas with neuroblastoma derived v-myc myelocytomatosis viral-related oncogene (MYCN) amplification. miR-380 overexpression cooperates with activated HRAS oncoprotein to transform primary cells, block oncogene-induced senescence and form tumors in mice. Conversely, inhibition of endogenous miR-380-5p in embryonic stem or neuroblastoma cells results in induction of p53, and extensive apoptotic cell death. In vivo delivery of a miR-380-5p antagonist decreases tumor size in an orthotopic mouse model of neuroblastoma. We demonstrate a new mechanism of p53 regulation in cancer and stem cells and uncover a potential therapeutic target for neuroblastoma.


Asunto(s)
Amplificación de Genes , MicroARNs/fisiología , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Regiones no Traducidas 3' , Animales , Apoptosis , Sitios de Unión , Daño del ADN , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/genética , Oncogenes , Proteína p53 Supresora de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...