Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35130, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170170

RESUMEN

Dietary exposure risks of 39 multi-class Endocrine Disrupting Chemicals (EDCs) to the threatened Gangetic dolphins (Platanista gangetica) were investigated in a conservation-priority segment of the Ganga River. Elevated EDCs bioaccumulation was observed across prey fish species, with di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) significantly contributing to the EDC burden. The concentrations of persistent organochlorines in prey revealed a shift from dioxin-like polychlorinated biphenyls (PCBs) to non-dioxin-like PCBs. The prevalence of regulated p,p' DDT (Dichlorodiphenyltrichloroethane) and γ-HCH (Lindane) residues suggests regional non-compliance with regulatory standards. The concentration of some EDCs is dependent on the habitat, foraging behavior, trophic level and fish growth. The potential drivers of EDCs contamination in catchment includes agriculture, vehicular emissions, poor solid waste management, textile industry, and high tourist influx. Risk quotients (RQs) based on toxicity reference value were generally below 1, while the RQ derived from the reference dose highlighted a high risk to Gangetic dolphins from DEHP, DDT, DnBP, arsenic, PCBs, mercury, and cadmium, emphasizing the need for their prioritization within monitoring programs. The study also proposes a monitoring framework to provide guidance on monitoring and assessment of chemical contamination in Gangetic dolphin and habitats.

2.
Environ Pollut ; 351: 123928, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615836

RESUMEN

The threatened Gangetic dolphin (Platanista gangetica) and smooth-coated otter (Lutrogale perspicillata) occuring in the Ganga River Basin (GRB), are experiencing a decline in their population and distribution range owing to multiple anthropogenic pressures, including pollution by Potentially Toxic Elements (PTEs). Apex predators primarily encounter contaminants through dietary exposure. Yet, notable gaps persist in our understanding of the risks associated with the ingestion of PTE-contaminated prey for Gangetic dolphins and smooth-coated otters. In this study, we examined the occurrence and spatial variation of PTEs in the prey (fish) of both these riverine mammals across three major rivers of the Basin, while also evaluating the associated risk of ingesting contaminated prey. Our assessment revealed no statistical variation in bioaccumulation profiles of PTEs across the three rivers, attributable to comparable land use patterns and PTE consumption within the catchment. Zn and Cu were the most dominant PTEs in the prey species. The major potential sources of pollution identified in the catchment include agricultural settlements, vehicular emissions, and the presence of metal-based additives in plastics. Zn, As and Hg accumulation vary with the trophic level whereas some PTEs show concentration (Hg) and dilution (As, Cr, Pb and Zn) with fish growth. The Risk Quotient (RQ), based on the dietary intake of contaminated prey calculated using Toxicity Reference Value was consistently below 1 indicating no significant risk to these riverine mammals. Conversely, with the exception of Co and Ni, the Reference Dose-based RQs for all other PTEs indicated a substantial risk for Gangetic dolphins and smooth-coated otters through dietary exposure. This study serves as a pivotal first step in assessing the risk of PTEs for two threatened riverine mammals in a densely populated river basin, highlighting the importance of their prioritization in regular monitoring to reinforce the ongoing conservation efforts.


Asunto(s)
Exposición Dietética , Monitoreo del Ambiente , Nutrias , Ríos , Contaminantes Químicos del Agua , Animales , Ríos/química , India , Exposición Dietética/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Peces , Delfines , Cadena Alimentaria
3.
Mol Biol Rep ; 51(1): 378, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427103

RESUMEN

BACKGROUND: The Ganga River System (GRS) is a biodiversity hotspot, its ecological richness is shaped by a complex geological history. In this study, we examined the genetic diversity, spatial connectivity, and population structure of the Asian Silurid catfish, Wallago attu, across seven tributaries of the GRS. METHODS AND RESULTS: We employed three mitochondrial DNA (mtDNA) regions: cytochrome c oxidase subunit I (COXI), cytochrome b (Cyt b), and control region (CR). Our comprehensive dataset encompassed 2420 bp of mtDNA, derived from 176 W. attu individuals across 19 sampling sites within the seven rivers of GRS. Our findings revealed high gene diversity (Hd:0.99) within W. attu populations. Analysis of Molecular Variance (AMOVA) highlighted that maximum genetic variations were attributed within the populations, and the observed genetic differentiation among the seven populations of W. attu ranged from low to moderate. Network analysis uncovered the presence of three distinct genetic clades, showing no specific association with seven studied rivers. Bayesian skyline plots provided insights into the demographic history of W. attu, suggesting a recent population expansion estimated to have occurred approximately 0.04 million years ago (mya) during the Pleistocene epoch. CONCLUSIONS: These results significantly enhance our understanding of the genetic diversity and spatial connectivity of W. attu, serving as a vital foundation for developing informed conservation strategies and the sustainable management of this economically valuable resource within the Ganga River System.


Asunto(s)
Bagres , Ríos , Humanos , Animales , ADN Mitocondrial/genética , Bagres/genética , Teorema de Bayes , Variación Genética/genética , Filogenia , Genética de Población
4.
Sci Rep ; 14(1): 5920, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467641

RESUMEN

The three-striped roofed (Batagur dhongoka) is a semi-aquatic turtle that belongs to family Geoemydidae. Due to anthropogenic pressure, it has been facing an intense decline of over 80% in its distribution range in the past 50 years. It is considered as 'Critically Endangered' so effective conservation strategies are needed to protect the species by determining their genetic diversity and population genetic structure. This study investigates the genetic diversity, population structure and demographic pattern of B. dhongoka from two Turtle Rescue and Rehabilitation Centre established near Ganga river using mitochondrial cytochrome b (Cyt b: 1140 bp) ; control region (CR: 451 bp) and ten nuclear microsatellite loci. mtDNA results show low levels of nucleotide diversity (π = 0.0022) in B. dhongoka haplotypes and provide evidence for a low substitution rate. The demographic pattern estimated by the Bayesian skyline plot (BSP) analysis indicates historical stability followed by growth in the effective population size, with a recent reduction in population size from ~ 2 thousand years ago. The microsatellite findings show a moderate level of observed heterozygosity (Ho: 0.49). Bayesian-based clustering analysis revealed weak genetic structures in B. dhongoka and presence of admixed assignations suggesting close genetic relationships. These findings shed light on B. dhongoka's genetic status and underline the necessity of comprehensive rehabilitation and relocation programs and conservation and management techniques to ensure the species' long-term survival. In order to ensure the effective protection and conservation of B. dhongoka, the Government of India has taken a proactive measure by incorporating it into Schedule I of the Wildlife (Protection) Act, 1972, as amended in 2022.


Asunto(s)
ADN Mitocondrial , Tortugas , Animales , ADN Mitocondrial/genética , Tortugas/genética , Variación Genética , Especies en Peligro de Extinción , Conservación de los Recursos Naturales , Ríos , Teorema de Bayes , Genética de Población , Haplotipos , Repeticiones de Microsatélite/genética
5.
Sci Rep ; 14(1): 7438, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548905

RESUMEN

For rewilding the depleted crocodylian populations in India, a targeted 'one-species one area' based conservation approach was adopted in the early-1970s. Suitable habitats were identified and designated as protected areas, specifically targeted to recover a particular crocodylian species. A ~ 610 km stretch of Chambal River in the Ganga River Basin was declared as National Chambal Sanctuary to restore the 'Critically Endangered' gharial (Gavialis gangeticus), where active management of mugger (Crocodylus palustris) was discouraged. In the present study, we examined the population trends, occupancy, and genetic status of mugger by conducting population monitoring and genetic assessment to understand the status of potentially competitive mugger in the Sanctuary. Our finding suggests that the mugger population has notably increased and colonised the Sanctuary. We observed a moderate level of genetic diversity in the mugger, which was relatively higher compared to the gharial in the Sanctuary. The rapid colonization of ecological generalist mugger raises concerns about potential competition with ecological specialist gharial threatening its long-term sustainability. Considering the coexistence dynamics between the species, it is essential to extend adaptive management strategies for mugger to ensure successful recovery of gharial population in the Sanctuary.


Asunto(s)
Ecosistema , Ríos , India
6.
PLoS One ; 19(3): e0300253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38484004

RESUMEN

Freshwater fauna is facing an uphill task for survival in the Ganga Basin, India, due to a range of factors causing habitat degradation and fragmentation, necessitating conservation interventions. As part of the ongoing efforts to conserve the freshwater fauna of the Basin, we are working on rehabilitating rescued freshwater chelonians. We carry out various interventions to restore rescued individuals to an apparent state of fitness for their release in suitable natural habitats. Morphometric measurements are crucial to managing captive wild animals for assessing their growth and well-being. Measurements are made using manual methods like vernier caliper that are prone to observer error experience and require handling the specimens for extended periods. Digital imaging technology is rapidly progressing at a fast pace and with the advancement of technology. We acquired images of turtles using smartphones along with manual morphometric measurements using vernier calipers of the straight carapace length and straight carapace width. The images were subsequently processed using ImageJ, a freeware and compared with manual morphometric measurements. A significant decrease in the time spent in carrying out morphometric measurements was observed in our study. The difference in error in measurements was, however, not significant. A probable cause for this may have been the extensive experience of the personnel carrying out the measurements using vernier caliper. Digital image processing technology can cause a significant reduction in the stress of the animals exposed to handling during measurements, thereby improving their welfare. Additionally, this can be used in the field to carry out morphometric measurements of free-ranging individuals, where it is often difficult to capture individuals, and challenges are faced in obtaining permission to capture specimens.


Asunto(s)
Tortugas , Animales , Animales Salvajes , Agua Dulce , Procesamiento de Imagen Asistido por Computador , Tortugas/anatomía & histología
7.
Ecol Evol ; 13(8): e10340, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554398

RESUMEN

Large mammals are susceptible to land use and climate change, unless they are safeguarded within large, protected areas. It is crucial to comprehend the effects of these changes on mammals to develop a conservation plan. We identified ecological hotspots that can sustain an ecosystem for the endangered Bengal tiger (Panthera tigris tigris), an umbrella species. We developed three distinct ensemble species distribution models (SDMs) for the Bengal tiger in the Indian East Himalayan Region (IEHR). The first model served as the baseline and considered habitat type, climate, land cover, and anthropogenic threats. The second model focused on climate, land use, and anthropogenic threats, the third model focused on climate variables. We projected the second and third models onto two future climate scenarios: RCP 4.5 and RCP 8.5. We evaluated the threats possess to protected areas within eco-sensitive zone based on the potential tiger habitat. Finally, we compared the potential habitat with the IUCN tiger range. Our study revealed that the Brahmaputra valley will serve as the primary habitat for tigers in the future. However, considering the projected severe climate scenarios, it is anticipated that tigers will undergo a range shift towards the north and east, especially in high-altitude regions. Very high conservation priority areas, which make up 3.4% of the total area, are predominantly located in the riverine corridor of Assam. High conservation priority areas, which make up 5.5% of total area are located in Assam and Arunachal Pradesh. It is important to note that conservation priority areas outside of protected areas pose a greater threat to tigers. We recommend reassessing the IUCN Red List's assigned range map for tigers in the IEHR, as it is over-predicted. Our study has led us to conclude both land use and climate change possess threats to the future habitat of tigers. The outcomes of our study will provide crucial information on identifying habitat hotspots and facilitate appropriate conservation planning efforts.

8.
Sci Rep ; 12(1): 7679, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538207

RESUMEN

As a traditional water source, springs are vital for Himalayan communities and it is essential to consciously focus on springs conservation. We report oxygen isotopes (δ18O) of spring water before, within, and after the tectonically active zones of the Alaknanda Valley, Uttarakhand. Higher variation of δ18O in the spring waters is found in highly tectonically disturbed zone i.e., Zone-2 with δ18O range - 4.9‰ to - 9.0‰ compared to tectonically less disturbed zones: Zone-1 and Zone-3 with δ18O value range - 7.9‰ to - 9.9‰ and - 7.4 to - 10.2‰ respectively. We hypothesize that the highly active thrust zones (Zone-2) with increased permeability compared to other Zones, manifested as greater spring density, results in higher water recharge in Zone-2. Very high to high spring density stretches are dominant in Zone-2 compared to Zone-1 and Zone-3. Stretches in Zone-2 with high spring density formed due to its highly tectonically active nature leads to the higher isotopic variation in Zone-2. The study also identifies the geosystem services provided by thrust zones as water resources to the local people and need of conservation modalities to manage the spring water resources in the thrust zones.


Asunto(s)
Monitoreo del Ambiente , Manantiales Naturales , Ambiente , Monitoreo del Ambiente/métodos , Humanos , Isótopos de Oxígeno/análisis , Agua
9.
Sci Rep ; 12(1): 482, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013461

RESUMEN

Jarman-Bell (1974) hypothesized that in the dry savanna of Africa, small-bodied herbivores tend to browse more on forage with high protein and low fibre content. This implies browsing on high nutritive forage by meso-herbivores, and grazing and mixed feeding on coarse forage by mega-herbivores. We tested this hypothesis in the riverine alluvial grasslands of the Kaziranga National Park (KNP), where seasonal flood and fire play an important role in shaping the vegetation structure. We analyzed the feeding habits and quality of major forage species consumed by three mega-herbivores, viz. greater one-horned rhino, Asian elephant, and Asiatic wild buffalo, and three meso-herbivores, viz. swamp deer, hog deer, and sambar. We found that both mega and meso-herbivores were grazers and mixed feeders. Overall, 25 forage plants constituted more than 70% of their diet. Among monocots, family Poaceae with Saccharum spp. (contributing > 9% of the diet), and, among dicots, family Rhamnaceae with Ziziphus jujuba (contributing > 4% of the diet) fulfilled the dietary needs. In the dry season, the concentration of crude protein, neutral detergent fibre, calcium, sodium, and phosphorous varied significantly between monocots and dicots, whereas only calcium and sodium concentrations varied significantly in the wet season. Dicots were found to be more nutritious throughout the year. Compared to the dry season, the monocots, viz. Alpinia nigra, Carex vesicaria, Cynodon dactylon, Echinochloa crus-galli, Hemarthria compressa, Imperata cylindrica, and Saccharum spp., with their significantly high crude protein, were more nutritious during the wet season. Possibly due to the availability of higher quality monocots in the wet season, both mega and meso-herbivores consume it in high proportion. We concluded that the Jarman-Bell principle does not apply to riverine alluvial grasslands as body size did not explain the interspecific dietary patterns of the mega and meso-herbivores. This can be attributed to seasonal floods, habitat and forage availability, predation risk, and management practices such as controlled burning of the grasslands. The ongoing succession and invasion processes, anthropogenic pressures, and lack of grassland conservation policy are expected to affect the availability of the principal forage and suitable habitat of large herbivores in the Brahmaputra floodplains, which necessitates wet grassland-based management interventions for the continued co-existence of large herbivores in such habitats.


Asunto(s)
Animales Salvajes/fisiología , Conducta Alimentaria , Herbivoria/fisiología , Animales , Ecosistema , Inundaciones , Pradera , India , Parques Recreativos , Plantas/química , Plantas/clasificación , Plantas/metabolismo , Estaciones del Año
10.
Mol Biol Rep ; 48(5): 4129-4135, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34041678

RESUMEN

Sambar (Rusa unicolor) is the largest oriental deer and has a wide distribution across South and Southeast Asia. Despite its wide distribution range, little information on the genetics of this species is available to date. We examined the genetic variability of Sambar populations using a partial fragment of the mtDNA control region and reconstructed the phylogeographic association of Sambar populations across India. We detected 56 haplotypes with an overall haplotype diversity, Hd = 0.939 ± 0.012 and nucleotide diversity, Pi = 0.029 ± 0.002 in Sambar populations across India. The Sambar populations of Northeast India exhibits 30 localized mtDNA control region haplotypes with no haplotype sharing with other populations of India. We identified a 40 bp tandem repeat motif in the mtDNA control region with variable copy numbers ranging between three to six duplications. The Sambar populations across India exhibited phylogeographic differentiation based on the observed insertion and deletion patterns in the mtDNA control region. The 40 bp tandem repeat motif was associated with patterns of insertions and deletions among different populations of Sambar in India. The findings of this study provide baseline information on the mtDNA genetic variability of Sambar populations across India, which is crucial for future population genetic studies.


Asunto(s)
Emparejamiento Base/genética , ADN Mitocondrial/genética , Ciervos/genética , Mutación INDEL , Mutagénesis Insercional/genética , Eliminación de Secuencia/genética , Secuencias Repetidas en Tándem/genética , Animales , Variaciones en el Número de Copia de ADN , Haplotipos , India , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA