Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460683

RESUMEN

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

2.
Environ Sci Technol ; 58(5): 2224-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267018

RESUMEN

Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Salinidad , Piretrinas/toxicidad , Insecticidas/toxicidad , Peces/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad
3.
Sci Total Environ ; 857(Pt 3): 159398, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257430

RESUMEN

Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Larva , Permetrina , Salinidad , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Piretrinas/toxicidad , Piretrinas/química , Peces/fisiología , Insecticidas/toxicidad , Insecticidas/química
4.
Environ Epigenet ; 8(1): dvac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518876

RESUMEN

Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.

5.
Toxics ; 9(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065370

RESUMEN

Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol-water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.

6.
Pharmacol Ther ; 225: 107837, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753133

RESUMEN

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Asunto(s)
Vapeo , Química , Humanos , Toxicología , Vapeo/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...