Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32202495

RESUMEN

Perturbed information processing in the amygdala has been implicated in developmentally originating neuropsychiatric disorders. However, little is known on the mechanisms that guide formation and refinement of intrinsic connections between amygdaloid nuclei. We demonstrate that in rodents the glutamatergic connection from basolateral to central amygdala (BLA-CeA) develops rapidly during the first 10 postnatal days, before external inputs underlying amygdala-dependent behaviors emerge. During this restricted period of synaptic development, kainate-type of ionotropic glutamate receptors (KARs) are highly expressed in the BLA and tonically activated to regulate glutamate release via a G-protein-dependent mechanism. Genetic manipulation of this endogenous KAR activity locally in the newborn LA perturbed development of glutamatergic input to CeA, identifying KARs as a physiological mechanism regulating formation of the glutamatergic circuitry in the amygdala.


Asunto(s)
Amígdala del Cerebelo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Animales , Electrofisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Ácido Kaínico/genética
2.
Mol Neurobiol ; 56(11): 7473-7489, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31044365

RESUMEN

Kainate type ionotropic glutamate receptors (KARs) are expressed in hippocampal interneurons and regulate interneuron excitability and GABAergic transmission. Neuropilin tolloid-like proteins (NETO1 and NETO2) act as KAR auxiliary subunits; however, their significance for various functions of KARs in GABAergic interneurons is not fully understood. Here we show that NETO1, but not NETO2, is necessary for dendritic delivery of KAR subunits and, consequently, for formation of KAR-containing synapses in cultured GABAergic neurons. Accordingly, electrophysiological analysis of neonatal CA3 stratum radiatum interneurons revealed impaired postsynaptic and metabotropic KAR signaling in Neto1 knockouts, while a subpopulation of ionotropic KARs in the somatodendritic compartment remained functional. Loss of NETO1/KAR signaling had no significant effect on development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-receptor-mediated glutamatergic transmission in CA3 interneurons, contrasting the synaptogenic role proposed for KARs in principal cells. Furthermore, loss of NETO1 had no effect on excitability and characteristic spontaneous network bursts in the immature CA3 circuitry. However, we find that NETO1 is critical for kainate-dependent modulation of network bursts and GABAergic transmission in the hippocampus already during the first week of life. Our results provide the first description of NETO1-dependent subcellular targeting of KAR subunits in GABAergic neurons and indicate that endogenous NETO1 is required for formation of KAR-containing synapses in interneurons. Since aberrant KAR-mediated excitability is implicated in certain forms of epilepsy, NETO1 represents a potential therapeutic target for treatment of both adult and early life seizures.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Interneuronas/metabolismo , Red Nerviosa/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Potenciales de Acción , Animales , Axones/metabolismo , Dendritas/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia
3.
Neurochem Res ; 44(3): 562-571, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28856535

RESUMEN

During the course of development, molecular mechanisms underlying activity-dependent synaptic plasticity change considerably. At immature CA3-CA1 synapses in the hippocampus, PKA-driven synaptic insertion of GluA4 AMPA receptors is the predominant mechanism for synaptic strengthening. However, the physiological significance of the developmentally restricted GluA4-dependent plasticity mechanisms is poorly understood. Here we have used microelectrode array (MEA) recordings in GluA4 deficient slice cultures to study the role of GluA4 in early development of the hippocampal circuit function. We find that during the first week in culture (DIV2-6) when GluA4 expression is restricted to pyramidal neurons, loss of GluA4 has no effect on the overall excitability of the immature network, but significantly impairs synchronization of the CA3 and CA1 neuronal populations. In the absence of GluA4, the temporal correlation of the population spiking activity between CA3-CA1 neurons was significantly lower as compared to wild-types at DIV6. Our data show that synapse-level defects in transmission and plasticity mechanisms are efficiently compensated for to normalize population firing rate at the immature hippocampal network. However, lack of the plasticity mechanisms typical for the immature synapses may perturb functional coupling between neuronal sub-populations, a defect frequently implicated in the context of developmentally originating neuropsychiatric disorders.


Asunto(s)
Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Ratones Noqueados , Sinapsis/fisiología
4.
Neuropharmacology ; 112(Pt A): 46-56, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27157711

RESUMEN

Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/crecimiento & desarrollo , Ácido Glutámico/metabolismo , Cultivo Primario de Células , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas Wistar
5.
Neuropharmacology ; 107: 9-17, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26926429

RESUMEN

Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/metabolismo , Uniones Comunicantes/metabolismo , Células Piramidales/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Región CA3 Hipocampal/efectos de los fármacos , Carbenoxolona/farmacología , Ácido Flufenámico/farmacología , Uniones Comunicantes/efectos de los fármacos , Mefloquina/farmacología , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Quinina/farmacología , Ratas Wistar , Técnicas de Cultivo de Tejidos
6.
Proc Natl Acad Sci U S A ; 111(11): 4321-6, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24599589

RESUMEN

The AMPA-receptor subunit GluA4 is expressed transiently in CA1 pyramidal neurons at the time synaptic connectivity is forming, but its physiological significance is unknown. Here we show that GluA4 expression is sufficient to alter the signaling requirements of long-term potentiation (LTP) and can fully explain the switch in the LTP kinase dependency from PKA to Ca2(+)/calmodulin-dependent protein kinase II during synapse maturation. At immature synapses, activation of PKA leads to a robust potentiation of AMPA-receptor function via the mobilization of GluA4. Analysis of GluA4-deficient mice indicates that this mechanism is critical for neonatal PKA-dependent LTP. Furthermore, lentiviral expression of GluA4 in CA1 neurons conferred a PKA-dependent synaptic potentiation and LTP regardless of the developmental stage. Thus, GluA4 defines the signaling requirements for LTP and silent synapse activation during a critical period of synapse development.


Asunto(s)
Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Análisis de Varianza , Animales , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Vectores Genéticos/genética , Hipocampo/metabolismo , Lentivirus , Ratones , Técnicas de Placa-Clamp
7.
Cereb Cortex ; 23(11): 2754-64, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22941723

RESUMEN

Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Ácido Glutámico/metabolismo , Sinapsis/fisiología , Animales , Fosfoproteínas Fosfatasas/metabolismo , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/fisiología
8.
Diabetes ; 55(12): 3446-54, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17130491

RESUMEN

Patients with type 1 diabetes are treated with daily injections of human insulin, an autoantigen expressed in thymus. Natural CD4(+)CD25(high) regulatory T-cells are derived from thymus, and accordingly human insulin-specific regulatory T-cells should exist. We had a chance to study peripheral blood mononuclear cells (PBMCs) from children with type 1 diabetes both before and after starting insulin treatment, and thus we could analyze the effects of insulin treatment on regulatory T-cells in children with type 1 diabetes. PBMCs were stimulated for 72 h with bovine/human insulin. The mRNA expression of regulatory T-cell markers (transforming growth factor-beta, Foxp3, cytotoxic T-lymphocyte antigen-4 [CTLA-4], and inducible co-stimulator [ICOS]) or cytokines (gamma-interferon [IFN-gamma], interleukin [IL]-5, IL-4) was measured by quantitative RT-PCR. The secretion of IFN-gamma, IL-2, IL-4, IL-5, and IL-10 was also studied. The expression of Foxp3, CTLA-4, and ICOS mRNAs in PBMCs stimulated with bovine or human insulin was higher in patients on insulin treatment than in patients studied before starting insulin treatment. The insulin-induced Foxp3 protein expression in CD4(+)CD25(high) cells was detectable in flow cytometry. No differences were seen in cytokine activation between the patient groups. Insulin stimulation in vitro induced increased expression of regulatory T-cell markers, Foxp3, CTLA-4, and ICOS only in patients treated with insulin, suggesting that treatment with human insulin activates insulin-specific regulatory T-cells in children with newly diagnosed type 1 diabetes. This effect of the exogenous autoantigen could explain the difficulties to detect in vitro T-cell proliferation responses to insulin in newly diagnosed patients. Furthermore, autoantigen treatment-induced activation of regulatory T-cells may contribute to the clinical remission of the disease.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/uso terapéutico , Leucocitos Mononucleares/inmunología , Linfocitos T/inmunología , Adolescente , Antígenos CD/genética , Antígenos de Diferenciación/genética , Antígenos de Diferenciación de Linfocitos T/genética , Biomarcadores/sangre , Glucemia/metabolismo , Antígeno CTLA-4 , Niño , Preescolar , Diabetes Mellitus Tipo 1/inmunología , Femenino , Factores de Transcripción Forkhead/genética , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Proteína Coestimuladora de Linfocitos T Inducibles , Lactante , Insulina/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...