Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 5(2): 1277-1286, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31984286

RESUMEN

The potential energy surface (PES) of the C6H5 + NH2 reaction has been investigated by using ab initio CCSD(T)//B3LYP/6-311++G(3df,2p) calculations. The conventional transition-state theory (TST) and the variable reaction coordinate-TST (VRC-TST) have been used to predict the rate constants for the channels possessing tight and barrierless transition states, respectively. The Rice-Ramsperger-Kassel-Marcus/Master equation (RRKM/ME) theory has been utilized to determine the pressure-dependent rate constants for these reactions. The PES shows that the reaction begins with an exothermic barrierless addition of NH2 to C6H5 producing the vital intermediate state, namely, aniline (C6H5NH2, IS1). Once IS1 is generated, it can further isomerize to various intermediate states, which can give rise to different products, including PR4 (4,5,6-trihydro-1-amino phenyl + H2), PR5 (3,4,5,6-tetrahydro phenyl + NH3), PR6 (2,3,5,6-tetrahydro-1-imidogen phenyl + H2), PR9 (3,4,5,6-tetrahydro-1-imidogen phenyl + H2), and PR10 (2,5,6-trihydro-1-amino phenyl + H2), of which the most stable product, PR5, was formed by the most favorable channel going through the two advantageous transition states T1/11 (-28.9 kcal/mol) and T11P5 (-21.5 kcal/mol). The calculated rate constants for the low-energy channel, 1.37 × 10-9 and 2.16 × 10-11 cm3 molecule-1 s-1 at T = 300, P = 1 Torr and T = 2000 K, P = 760 Torr, respectively, show that the title reaction is almost pressure- and temperature-dependent. The negative temperature-dependent rate coefficients can be expressed in the modified Arrhenius form of k 1 = 8.54 × 1013 T -7.20 exp (-7.07 kcal·mol-1/RT) and k 2 = 2.42 × 1015 T -7.61 exp (-7.75 kcal·mol-1/RT) at 1 and 10 Torr, respectively, and in the temperature range of 300-2000 K. The forward and reverse rate coefficients as well as the high-pressure equilibrium constants of the C6H5 + NH2 ↔ IS1 process were also predicted; their values revealed that its kinetics do not depend on pressure at low temperature but strongly depend on pressure at high temperature. Moreover, the predicted formation enthalpies of reactants and the enthalpy changes of some channels are in good agreement with the experimental results.

2.
ACS Omega ; 4(12): 14996-15003, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31552341

RESUMEN

Radical-scavenging activity of isorhamnetin (1) and its diglycosides, named isorhamnetin-3,5'-O-ß-D-diglucoside (2) and isorhamnetin-3,7-O-ß-D-diglucoside (3) extracted from Anoectochilus roxburghii, has been studied through three main antioxidant pathways: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer, and sequential proton loss electron transfer (SPLET). All thermodynamic parameters related to these radical-scavenging mechanisms were computed at the B3LYP/6-311G(d,p) level of theory both in the gas phase and in solution. The results suggest that HAT is the predominant mechanism in the gas phase, while SPLET is supported in an aqueous environment. In addition, the stability of radicals has also been explored by electron spin density and intramolecular hydrogen bonding. The potential energy profiles and kinetic calculations for the reactions between the selected compounds and the CH3OO• radical were calculated at 298.15 K. Among all investigated, compound 2 has the highest antioxidant activity with the lowest Gibbs free energy (-4.05 kcal/mol) and the highest hydrogen atom transfer rate constant (3.61 × 105 M-1 s-1). Substitution of the OH and OMe groups by two glucoses at the 3 and 5' sites of isorhamnetin has a significant impact on its antioxidant activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...