Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Rep ; 14(1): 7496, 2024 03 29.
Article En | MEDLINE | ID: mdl-38553592

Intracranial arterial dolichoectasia (IADE) is associated with the interaction of hypertension and inflammation, and microcurrent can be effective in hypertension. Therefore, this study aimed to investigate the therapeutic effect of microcurrent electrical stimulation in a mouse IADE model. This study randomly categorized 20 mice into five groups: group 1-C (healthy control), group 2-D (IADE model), group 3-M + D (microcurrent administration before nephrectomy and until brain surgery), group 4-D + M (microcurrent administration for 4 weeks following brain surgery), and group 5-M (microcurrent administration for 4 weeks). Cerebral artery diameter and thickness and cerebral arterial wall extracellular matrix components were assessed. Among the five groups, group 2-D showed significantly higher cerebral arterial wall diameter (117.79 ± 17.05 µm) and proportion of collagen (42.46 ± 14.12%) and significantly lower arterial wall thickness (9.31 ± 2.26 µm) and proportion of smooth muscle cell (SMC) and elastin in the cerebral arterial wall (SMC: 38.05 ± 10.32%, elastin: 11.11 ± 6.97%). Additionally, group 4-D + M exhibited a non-significantly lower diameter (100.28 ± 25.99 µm) and higher thickness (12.82 ± 5.17 µm). Group 5-M demonstrated no evidence of toxicity in the liver and brain. The pilot study revealed that microcurrent is effective in preventing IADE development, although these beneficial effects warrant further investigation.


Cerebral Arteries , Hypertension , Animals , Mice , Pilot Projects , Brain , Elastin
2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article En | MEDLINE | ID: mdl-37834402

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.


Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Melitten/pharmacology , Transferrin/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Amyloid/metabolism , Magnetic Iron Oxide Nanoparticles , Mice, Transgenic , Plaque, Amyloid/metabolism , Disease Models, Animal
3.
Molecules ; 28(8)2023 Apr 17.
Article En | MEDLINE | ID: mdl-37110769

Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.


Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Serine Proteases
4.
Pharmaceutics ; 14(8)2022 Aug 12.
Article En | MEDLINE | ID: mdl-36015303

Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Because TNBC lacks the expression of commonly targeted receptors, it is challenging to develop a new imaging agent for this cancer subtype. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-protein complexes that have been linked to tumor development and progression. Considering the high expression of hnRNPA2B1, an hnRNP subtype, in TNBC MDA-MB-231 cells, this study aimed to develop a novel hnRNPA2B1 antibody-based nuclear imaging agent. The hnRNPA2B1-specific antibody was radiolabeled with 64Cu and evaluated in vitro and in vivo. The trans-cyclooctene (TCO) was functionalized on the antibody to obtain hnRNP-PEG4-TCO and reactive tetrazine (Tz) on the ultrastable bifunctional chelator PCB-TE2A-alkyne to yield PCB-TE2A-Tz for the inverse electron demand Diels-Alder reaction. The 64Cu-radiolabeled antibody was administered and imaged at 1-18 h time points for conventional imaging. Alternatively, the unlabeled antibody conjugate was administered, and 48 h later radiolabeled 64Cu-PCB-TE2A-Tz was administered to the same mice for the pretargeting strategy and imaged at the same time intervals for direct comparison. The tumor was successfully visualized in both strategies, and comparatively, pretargeting showed superior results. The 64Cu-PCB-TE2A-Tz was successfully clicked at the tumor site with hnRNP-PEG4-TCO and the non-clicked were concurrently eliminated. This led to increase the tumor uptake with extremely high tumor-to-background ratio manifested by positron emission tomography (PET) imaging and biodistribution studies.

5.
Eur J Nucl Med Mol Imaging ; 49(12): 4073-4087, 2022 Oct.
Article En | MEDLINE | ID: mdl-35680737

PURPOSE: Hydrogen sulfide (H2S) plays important roles in brain pathophysiology. However, nuclear imaging probes for the in vivo detection of brain H2S in living animals have not been developed. Here, we report the first nuclear imaging probe that enables in vivo imaging of endogenous H2S in the brain of live mice. METHODS: Utilizing a bis(thiosemicarbazone) backbone, a fluorescent ATSM-FITC conjugate was synthesized. Its copper complex, Cu(ATSM-FITC) was thoroughly tested as a biosensor for H2S. The same ATSM-FITC ligand was quantitatively labeled with [64Cu]CuCl2 to obtain a radioactive [64Cu][Cu(ATSM-FITC)] imaging probe. Biodistribution and positron emission tomography (PET) imaging studies were performed in healthy mice and neuroinflammation models. RESULTS: The Cu(ATSM-FITC) complex reacts instantly with H2S to release CuS and becomes fluorescent. It showed excellent reactivity, sensitivity, and selectivity to H2S. Endogenous H2S levels in living cells were successfully detected by fluorescence microscopy. Exceptionally high brain uptake of [64Cu][Cu(ATSM-FITC)] (> 9% ID/g) was observed in biodistribution and PET imaging studies. Subtle changes in brain H2S concentrations in live mice were accurately detected by quantitative PET imaging. Due to its dual modality feature, increased H2S levels in neuroinflammation models were characterized at the subcellular level by fluorescence imaging and at the whole-body scale by PET imaging. CONCLUSION: Our biosensor can be readily utilized to study brain H2S function in live animal models and shows great potential as a novel imaging agent for diagnosing brain diseases.


Coordination Complexes , Hydrogen Sulfide , Organometallic Compounds , Thiosemicarbazones , Animals , Brain/diagnostic imaging , Copper , Fluorescein-5-isothiocyanate , Fluorescent Dyes , Ligands , Mice , Neuroinflammatory Diseases , Tissue Distribution
6.
Int J Biol Sci ; 17(14): 3818-3836, 2021.
Article En | MEDLINE | ID: mdl-34671201

Rationale: In intracranial arterial dolichoectasia (IADE) development, the feedback loop between inflammatory cytokines and macrophages involves TNF-α and NF-κB signaling pathways and leads to subsequent MMP-9 activation and extracellular matrix (ECM) degeneration. In this proof-of-concept study, melittin-loaded L-arginine-coated iron oxide nanoparticle (MeLioN) was proposed as the protective measure of IADE formation for this macrophage-mediated inflammation and ECM degeneration. Methods: IADE was created in 8-week-old C57BL/6J male mice by inducing hypertension and elastase injection into a basal cistern. Melittin was loaded on the surface of ION as a core-shell structure (hydrodynamic size, 202.4 nm; polydispersity index, 0.158). Treatment of MeLioN (2.5 mg/kg, five doses) started after the IADE induction, and the brain was harvested in the third week. In the healthy control, disease control, and MeLioN-treated group, the morphologic changes of the cerebral arterial wall were measured by diameter, thickness, and ECM composition. The expression level of MMP-9, CD68, MCP-1, TNF-α, and NF-κB was assessed from immunohistochemistry, polymerase chain reaction, and Western blot assay. Results: MeLioN prevented morphologic changes of cerebral arterial wall related to IADE formation by restoring ECM alterations and suppressing MMP-9 expression. MeLioN inhibited MCP-1 expression and reduced CD68-positive macrophage recruitments into cerebral arterial walls. MeLioN blocked TNF-α activation and NF-κB signaling pathway. In the Sylvian cistern, co-localization was found between the CD68-positive macrophage infiltrations and the MeLioN distributions detected on Prussian Blue and T2* gradient-echo MRI, suggesting the role of macrophage harboring MeLioN. Conclusions: The macrophage infiltration into the arterial wall plays a critical role in the MMP-9 secretion. MeLioN, designed for ION-mediated melittin delivery, effectively prevents IADE formation by suppressing macrophage-mediated inflammations and MMP activity. MeLioN can be a promising strategy preventing IADE development in high-risk populations.


Cerebral Arteries/pathology , Cerebrovascular Disorders/prevention & control , Inflammation/prevention & control , Macrophages/physiology , Magnetite Nanoparticles/therapeutic use , Melitten/administration & dosage , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cerebrovascular Disorders/pathology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Disease Models, Animal , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
7.
ACS Nano ; 15(11): 17348-17360, 2021 11 23.
Article En | MEDLINE | ID: mdl-34405675

Most nanoparticles show much higher uptake in mononuclear phagocyte system (MPS) organs than in tumors, which has been a long-lasting dilemma in nanomedicine. Here, we report an imaging strategy that selectively decreases MPS organ uptakes by utilizing the differential esterase activity in tumors and other organs. When an esterase-labile radiotracer loaded liposome was injected into the body, radioactivity was rapidly excreted from the liver and spleen after breakage of the ester bond by esterase. However, the lipophilic radiotracer delivered to the tumor remained in the tumor with minimal bond cleavage. The underlying mechanism was fully characterized in vitro and in vivo in colon tumor models. As a proof of concept, the liposomal radiotracer was further optimized for the early detection of pancreatic cancer. The folate-coated liposomal radiotracer showed highly selective tumor uptake. At 4 h postinjection, a pancreatic tumor a few millimeters in size was unambiguously visualized in orthotopic tumor models by PET imaging. At 24 h, an exceptionally high tumor-to-background ratio was achieved, enabling the visualization of tumors alone with minimal background noise. More than 9% of the total radioactivity was found in the tumor. Utilizing our imaging strategy, various tumor imaging agents can be developed for sensitive detection with ultrahigh contrast.


Pancreatic Neoplasms , Positron-Emission Tomography , Cell Line, Tumor , Esterases , Humans , Liposomes , Pancreatic Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Tissue Distribution , Pancreatic Neoplasms
8.
ACS Appl Bio Mater ; 4(3): 2544-2557, 2021 03 15.
Article En | MEDLINE | ID: mdl-35014372

Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.


Antibodies/chemistry , Biocompatible Materials/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Positron-Emission Tomography , Animals , Antibodies/metabolism , Biocompatible Materials/metabolism , Click Chemistry , Coordination Complexes/metabolism , Copper/metabolism , Copper Radioisotopes , Materials Testing , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Particle Size
9.
Org Biomol Chem ; 17(29): 7088-7094, 2019 07 24.
Article En | MEDLINE | ID: mdl-31290912

Hydrogen sulfide (H2S) has been reported as a gaseous signaling molecule in cells. H2S modulation is dependent on the partial pressure of oxygen in cells, which means hypoxia can induce H2S production under various pathophysiological conditions. Hypoxia is a common condition in solid tumors and can lead to malignant tumors that may become aggressive and result in worse prognosis. We designed and synthesized probe Cu-CD for H2S detection under hypoxia conditions. It is selective and sensitive toward various biological thiols, reactive nitrogen species (RNS), and reactive oxygen species (ROS). The fluorescence intensity of Cu-CD in the cytoplasms of HeLa and EMT6 cells was enhanced in proportion to the concentration of exogenous/endogenous H2S. Moreover, Cu-CD can be able to detect endogenous H2S production accompanied by expression of HIF-1α. Therefore, Cu-CD can be a key tool to explore how H2S contributes to neovascularization and growth of solid tumor tissues in pathophysiological or hypoxic conditions.


Coordination Complexes/pharmacology , Copper/pharmacology , Dansyl Compounds/pharmacology , Fluorescent Dyes/pharmacology , Hydrogen Sulfide/analysis , Hypoxia/drug therapy , Animals , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Cyclams , Dansyl Compounds/chemistry , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HeLa Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Hydrogen Sulfide/metabolism , Hypoxia/metabolism , Mice , Molecular Structure , Optical Imaging , Structure-Activity Relationship , Tumor Cells, Cultured
10.
J Med Chem ; 61(1): 385-395, 2018 01 11.
Article En | MEDLINE | ID: mdl-29240422

Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.


Chelating Agents/chemistry , Copper Radioisotopes , Oligopeptides/chemistry , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Drug Stability , Hydrophobic and Hydrophilic Interactions , Isotope Labeling , Mice , Oligopeptides/pharmacokinetics , Radiochemistry , Rats , Rats, Sprague-Dawley , Tissue Distribution
11.
Angew Chem Int Ed Engl ; 55(32): 9365-70, 2016 08 01.
Article En | MEDLINE | ID: mdl-27392287

Hydrogen sulfide (H2 S) has multifunctional roles as a gas signaling molecule in living systems. However, the efficient detection and imaging of H2 S in live animals is very challenging. Herein, we report the first radioisotope-based immobilization technique for the detection, quantification, and in vivo imaging of endogenous H2 S. Macrocyclic (64) Cu complexes that instantly reacted with gaseous H2 S to form insoluble (64) CuS in a highly sensitive and selective manner were prepared. The H2 S concentration in biological samples was measured by a thin-layer radiochromatography method. When (64) Cu-cyclen was injected into mice, an elevated H2 S concentration in the inflamed paw was clearly visualized and quantified by Cerenkov luminescence and positron emission tomography (PET) imaging. PET imaging was also able to pinpoint increased H2 S levels in a millimeter-sized infarcted lesion of the rat heart.


Copper Radioisotopes/chemistry , Hydrogen Sulfide/analysis , Organometallic Compounds/chemistry , Animals , Copper Radioisotopes/administration & dosage , Gases/analysis , Mice , Optical Imaging , Organometallic Compounds/administration & dosage , Positron-Emission Tomography , Rats
12.
Inorg Chem ; 54(17): 8177-86, 2015 Sep 08.
Article En | MEDLINE | ID: mdl-26286436

Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides.


Chelating Agents/chemistry , Copper Radioisotopes/chemistry , Organometallic Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Chelating Agents/chemical synthesis , Male , Mice , Mice, Inbred BALB C , Models, Animal , Molecular Structure , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemistry , Tissue Distribution
...