Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202314

RESUMEN

Glucosinolates are sulfur-containing phytochemicals generally abundant in cruciferous vegetables such as pak choy. Glucosinolates participate in a range of biological activities essential for promoting a healthy human body. In this study, we aimed to elucidate glucosinolate variability present in pak choy germplasm that are under conservation at the Rural Development Administration Genebank, Jeonju, Republic of Korea. The Acquity Ultra-Performance Liquid Chromatography (UHPLC) analytical system was used in profiling the glucosinolate content in leaf samples of various accessions. We identified a total of 17 glucosinolates in the germplasm. Based on principal compoment analysis performed, three separate groups of the accessions were obtained. Group 1 contained the cultivar cheongsacholong which recorded high content of glucobrassicin (an indole), glucoerucin (aliphatic), gluconasturtiin (aromatic) and glucoberteroin (aliphatic). Group 2 consisted of six accessions, BRA77/72, Lu ling gaogengbai, 9041, Wuyueman, RP-75 and DH-10, predominatly high in aliphatic compounds including glucoiberin, glucocheirolin, and sinigrin. Group 3 comprised the majority of the accessions which were characterized by high content of glucoraphanin, epiprogoitrin, progoitrin, and glucotropaeolin. These results revealed the presence of variability among the pak choy germplasm based on their glucosinolate content, providing an excellent opprtunity for future breeding for improved glucosinolate content in the crop.

2.
Front Plant Sci ; 13: 902464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668797

RESUMEN

One of the most serious pepper diseases is Phytophthora blight, which is caused by Phytophthora capsici. It is crucial to assess the resistance of pepper genetic resources to Phytophthora blight, understand the genetic resistances, and develop markers for selecting resistant pepper materials in breeding programs. In this study, the resistance of 342 pepper accessions to P. capsici was evaluated. The disease severity score method was used to evaluate the phenotypic responses of pepper accessions inoculated with the KCP7 isolate. A genome-wide association study (GWAS) was performed to identify single nucleotide polymorphisms (SNPs) linked to P. capsici (isolate KCP7) resistance. The pepper population was genotyped using the genotype-by-sequencing (GBS) method, and 45,481 SNPs were obtained. A GWAS analysis was performed using resistance evaluation data and SNP markers. Significantly associated SNPs for P. capsici resistance at 4 weeks after inoculation of the GWAS pepper population were selected. These SNPs for Phytophthora blight resistance were found on all chromosomes except Chr.05, Chr.09, and Chr.11. One of the SNPs found on Chr.02 was converted into a high-resolution melting (HRM) marker, and another marker (QTL5-1) from the previous study was applied to pepper accessions and breeding lines for validation and comparison. This SNP marker was selected because the resistance phenotype and the HRM marker genotype matched well. The selected SNP was named Chr02-1126 and was located at 112 Mb on Chr.02. The Chr02-1126 marker predicted P. capsici resistance with 78.5% accuracy, while the QTL5-1 marker predicted resistance with 80.2% accuracy. Along with the marker for major quantitative traits loci (QTLs) on Chr.05, this Chr02-1126 marker could be used to accurately predict Phytophthora blight resistance in pepper genetic resources. Therefore, this study will assist in the selection of resistant pepper plants in order to breed new phytophthora blight-resistant varieties.

3.
Plants (Basel) ; 9(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114129

RESUMEN

Glucosinolates (GSLs) are sulfur-containing secondary metabolites naturally occurring in Brassica species. The purpose of this study was to identify the GSLs, determine their content, and study their accumulation patterns within and between leaves of kimchi cabbage (Brassica rapa L.) cultivars. GSLs were analyzed using UPLC-MS/MS in negative electron-spray ionization (ESI-) and multiple reaction monitoring (MRM) mode. The total GSL content determined in this study ranged from 621.15 to 42434.21 µmolkg-1 DW. Aliphatic GSLs predominated, representing from 4.44% to 96.20% of the total GSL content among the entire samples. Glucobrassicanapin (GBN) contributed the greatest proportion while other GSLs such as glucoerucin (ERU) and glucotropaeolin (TRO) were found in relatively low concentrations. Principal component analysis (PCA) yielded three principal components (PCs) with eigenvalues ≥ 1, altogether representing 74.83% of the total variation across the entire dataset. Three kimchi cabbage (S/No. 20, 4, and 2), one leaf mustard (S/No. 26), and one turnip (S/No. 8) genetic resources were well distinguished from other samples. The GSL content varied significantly among the different positions (outer, middle, and inner) of the leaves and sections (top, middle, bottom, green/red, and white) within the leaves. In most of the samples, higher GSL content was observed in the proximal half and white sections and the middle layers of the leaves. GSLs are regarded as allelochemicals; hence, the data related to the patterns of GSLs within the leaf and between leaves at a different position could be useful to understand the defense mechanism of Brassica plants. The observed variability could be useful for breeders to develop Brassica cultivars with high GSL content or specific profiles of GSLs.

4.
Plants (Basel) ; 9(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824928

RESUMEN

Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world, with Asia as a continent contributing the most. As part of the effort to diversify watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationships between each. Diverse characteristics were observed among many of the traits, but most of the genetic resources (>90%) were either red or pink-fleshed. Korean originated fruits contained intermediate levels of soluble solid content (SSC) while the USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated fruits had generally the highest levels of soluble solids. The citrulline and arginine contents determined using the High Performance Liquid Chromatography (HPLC) method ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using the Citrulline Assay Kit ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC, whereas red- and pink-colored flesh samples had less citrulline compared to yellow and orange.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...