Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38735699

RESUMEN

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Asunto(s)
Apoptosis , Benzopiranos , Butiratos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3 , Humanos , Proliferación Celular/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/síntesis química , Butiratos/farmacología , Butiratos/química , Butiratos/síntesis química , Apoptosis/efectos de los fármacos , Células A549 , Estereoisomerismo , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Estructura Molecular , Angelica/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química
2.
Biomed Res Int ; 2022: 3647900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572726

RESUMEN

Although many anticancer drugs have been developed for triple-negative breast cancer (TNBC) treatment, there are no obvious therapies. Moreover, the combination of epidermal growth factor receptor- (EGFR-) targeted therapeutics and classical chemotherapeutic drugs has been assessed in clinical trials for TNBC treatment, but those are not yet approved. Our serial studies for newly developed herbal medicine named SH003 provide evidence of its broad effectiveness in various cancers, especially on TNBC. The current study demonstrates a synergic effect of combinatorial treatment of SH003 and docetaxel (DTX) by targeting EGFR activation. The combinatorial treatment reduced the viability of both BT-20 and MDA-MB-231 TNBC cells, displaying the synergism. The combination of SH003 and DTX also caused the synergistic effect on apoptosis. Mechanistically, the cotreatment of SH003 and DTX inhibited phosphorylation of EGFR and AKT in both BT-20 and MDA-MB-231 cells. Moreover, our xenograft mouse tumor growth assays showed the inhibitory effect of the combinatorial treatment with no effect on body weight. Our immunohistochemistry confirmed its inhibition of EGFR phosphorylation in vivo. Collectively, combinatorial treatment of SH003 and DTX has a synergistic anticancer effect at a relatively low concentration by targeting EGFR in TNBC, indicating safety and efficacy of SH003 as adjuvant combination therapy with docetaxel. Thus, it is worth testing the combinatorial effect in clinics for treating TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Docetaxel/uso terapéutico , Receptores ErbB , Humanos , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-34422067

RESUMEN

Docetaxel-based therapy has been applied to kill cancers including lung and breast cancers but frequently causes peripheral neuropathy such as mechanical allodynia. Lack of effective drugs for chemotherapy-induced peripheral neuropathy (CIPN) treatment leads us to find novel drugs. Here, we investigated whether and how novel anticancer herbal prescription SH003 alleviates mechanical allodynia in mouse model of docetaxel-induced neuropathic pain. Docetaxel-induced mechanical allodynia was evaluated using von Frey filaments. Nerve damage and degeneration in paw skin of mice were investigated by immunofluorescence staining. Neuroinflammation markers in bloodstream, lumbar (L4-L6) spinal cord, and sciatic nerves were examined by ELISA or western blot analysis. Docetaxel (15.277 mg/kg) was intravenously injected into the tail vein of C57BL/6 mice, and mechanical allodynia was followed up. SH003 (557.569 mg/kg) was orally administered at least 60 min before the mechanical allodynia test, and von Frey test was performed twice. Docetaxel injection induced mechanical allodynia, and SH003 administration restored withdrawal threshold. Meanwhile, degeneration of intraepidermal nerve fibers (IENF) was observed in docetaxel-treated mice, but SH003 treatment suppressed it. Moreover, docetaxel injection increased levels of TNF-α and IL-6 in plasma and expressions of phospho-NF-κB and phospho-STAT3 in both of lumbar spinal cord and sciatic nerves, while SH003 treatment inhibited those changes. Taken together, it is worth noting that TNF-α and IL-6 in plasma and phospho-NF-κB and phospho-STAT3 in spinal cord and sciatic nerves are putative biomarkers of docetaxel-induced peripheral neuropathy (DIPN) in mouse models. In addition, we suggest that SH003 would be beneficial for alleviation of docetaxel-induced neuropathic pain.

4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445110

RESUMEN

Epidermal growth factor receptor (EGFR) is overexpressed in lung cancer patients. Despite treatment with various EGFR tyrosine kinase inhibitors, recurrence and metastasis of lung cancer are inevitable. Docetaxel (DTX) is an effective conventional drug that is used to treat various cancers. Several researchers have studied the use of traditional herbal medicine in combination with docetaxel, to improve lung cancer treatment. SH003, a novel herbal mixture, exerts anticancer effects in different cancer cell types. Here, we aimed to investigate the apoptotic and anticancer effects of SH003 in combination with DTX, in human non-small-cell lung cancer (NSCLC). SH003, with DTX, induced apoptotic cell death, with increased expression of cleaved caspases and cleaved poly (ADP-ribose) polymerase in NSCLC cells. Moreover, SH003 and DTX induced the apoptosis of H460 cells via the suppression of the EGFR and signal transducer and activator of transcription 3 (STAT3) signaling pathways. In H460 tumor xenograft models, the administration of SH003 or docetaxel alone diminished tumor growth, and their combination effectively killed cancer cells, with increased expression of apoptotic markers and decreased expression of p-EGFR and p-STAT3. Collectively, the combination of SH003 and DTX may be a novel anticancer strategy to overcome the challenges that are associated with conventional lung cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Docetaxel/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células A549 , Angelica , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Planta del Astrágalo , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/metabolismo , Trichosanthes , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
J Microbiol Biotechnol ; 29(3): 367-372, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30661323

RESUMEN

Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'- dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ΔforP mutant ( or ΔistP mutant strain) successfully restored the biosynthesis of 3',4'- dideoxy fortimicins and istamycins , thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.


Asunto(s)
Aminoglicósidos/biosíntesis , Antibacterianos/biosíntesis , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Genes Bacterianos/genética , Fosfotransferasas/genética , Secuencia de Aminoácidos , Aminoglicósidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nucleótidos de Desoxiguanina/biosíntesis , Nucleótidos de Desoxiguanina/genética , Didesoxinucleótidos/biosíntesis , Didesoxinucleótidos/genética , Gentamicinas/biosíntesis , Micromonospora/genética , Micromonospora/metabolismo , Alineación de Secuencia , Streptomyces/genética , Streptomyces/metabolismo
6.
Front Microbiol ; 9: 2333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319595

RESUMEN

2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase-encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codon-optimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...