Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432671

RESUMEN

L-α-Glycerylphosphorylcholine (L-α-GPC) has mainly been produced by two methods: extraction from plants rich in phosphatidylcholine and chemical synthesis. However, production through extraction involves difficult processes, such as fermentation, extractions and ripening, and conventional chemical synthesis methods with high-cost reactants and a batch reactor. These methods are not ideal for large-quantity production. Thus, it is important to develop a simple production method of L-α-GPC, which is suitable for mass production without the need for expensive reactants. Here, we studied synthetic L-α-GPC methods that are applicable to a flow synthesis system, which can provide selectivity, reproducibility, scalability, and a high yield in short reaction time using inexpensive starting materials. We developed a two-step synthetic route to produce L-α-GPC, including the synthesis of phosphoryl choline using choline chloride and phosphoryl oxychloride (POCl3) as a first step and synthesis of L-α-GPC by reacting phosphoryl choline with (R)-(-)-3-chloro-1,2-propanediol (CPD) as a second step under basic conditions. Both steps were separately performed in a customized flow reactor, and reaction conditions were optimized. Finally, phosphoryl choline and L-α-GPC, the products first and second reactions, were successfully synthesized with high conversion yields of 97% and 79%, respectively.

2.
ACS Appl Mater Interfaces ; 12(14): 16490-16502, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32180406

RESUMEN

Naphthalene diimide (NDI)-biselenophene copolymer (PNDIBS), NDI-selenophene copolymer (PNDIS), and the fluorinated donor polymer PM6 were used to investigate how a fluorinated polymer component affects the morphology and performance of all-polymer solar cells (all-PSCs). Although the PM6:PNDIBS blend system exhibits a high open-circuit voltage (Voc = 0.925 V) and a desired low optical bandgap energy loss (Eloss = 0.475 eV), the overall power conversion efficiency (PCE) was 3.1%. In contrast, PM6:PNDIS blends combine a high Voc (0.967 V) with a high fill factor (FF = 0.70) to produce efficient all-PSCs with 9.1% PCE. Furthermore, the high-performance PM6:PNDIS all-PSCs could be fabricated by various solution processing approaches and at active layer thickness as high as 300 nm without compromising photovoltaic efficiency. The divergent photovoltaic properties of PNDIS and PNDIBS when paired respectively with PM6 are shown to originate from the starkly different blend morphologies and blend photophysics. Efficient PM6:PNDIS blend films were found to exhibit a vertical phase stratification along with lateral phase separation, while the molecular packing had a predominant face-on orientation. Bulk lateral phase separation with both face-on and edge-on molecular orientations featured in the poor-performing PM6:PNDIBS blend films. Enhanced charge photogeneration and suppressed geminate and bimolecular recombinations with 99% charge collection probability found in PM6:PNDIS blends strongly differ from the poor charge collection probability (66%) and high electron-hole pair recombination seen in PM6:PNDIBS. Our findings demonstrate that beyond the generally expected enhancement of Voc, a fluorinated polymer component in all-PSCs can also exert a positive or negative influence on photovoltaic performance via the blend morphology and blend photophysics.

3.
Chem Commun (Camb) ; 53(49): 6649-6652, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28585652

RESUMEN

We report an automated flow chemistry platform that can efficiently perform a wide range of chemistries, including single/multi-phase and single/multi-step, with a reaction volume of just 14 µL. The breadth of compatible chemistries is successfully demonstrated and the desired products are characterized, isolated, and collected online by preparative HPLC/MS/ELSD.


Asunto(s)
Química Farmacéutica/instrumentación , Química Farmacéutica/métodos , Descubrimiento de Drogas , Automatización , Cromatografía Líquida de Alta Presión , Técnicas Químicas Combinatorias , Dispersión Dinámica de Luz , Espectrometría de Masas
4.
Adv Mater ; 28(1): 124-31, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26513532

RESUMEN

Fullerene-free and processing additive-free 8.5% efficient polymer solar cells are achieved by using a new 3,4-ethylenedioxythiophene-linked arylene diimide dimer with a 76° twist angle. The devices combine high (78-83%) external quantum efficiency with high (0.91-0.95 V) photovoltages and thus have relatively low optical bandgap energy loss.

5.
Adv Mater ; 27(31): 4578-84, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26134594

RESUMEN

By controlling the polymer/polymer blend self-organization rate, all-polymer solar cells composed of a high-mobility, crystalline, naphthalene diimide-selenophene copolymer acceptor and a benzodithiophene-thieno[3,4-b]thiophene copolymer donor are achieved with a record 7.7% power conversion efficiency and a record short-circuit current density (18.8 mA cm(-2)).

6.
Adv Mater ; 27(21): 3266-72, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25899623

RESUMEN

Arylene linkers in a series of new tetraaza-benzodifluoranthene diimide dimers enable tuning of the 3D molecular structure of nonfullerene electron acceptors, facilitating observation of dramatic variation of the power conversion efficiency from 2.6% to 6.4% as the twist angle between the monomeric building blocks in the dimer is varied.

7.
J Am Chem Soc ; 137(13): 4424-34, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25807377

RESUMEN

Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

8.
Chem Commun (Camb) ; 50(74): 10801-4, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25089300

RESUMEN

Side chain engineering of an n-type polymer provides a means of maintaining solubility while increasing crystallinity and electron mobility, leading to enhanced photocurrent. Bulk heterojunction solar cells composed of a side chain engineered copolymer (PNDIS-30BO) as acceptor and PSEHTT as donor give 10.4 mA cm(-2) photocurrent and 4.4% efficiency.

9.
Adv Mater ; 26(35): 6080-5, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25043958

RESUMEN

All-polymer solar cells with 4.8% power conversion efficiency are achieved via solution processing from a co-solvent. The observed short-circuit current density of 10.5 mA cm(-2) and external quantum efficiency of 61.3% are also the best reported in all-polymer solar cells so far. The results demonstrate that processing the active layer from a co-solvent is an important strategy in achieving highly efficient all-polymer solar cells.

10.
J Am Chem Soc ; 135(40): 14960-3, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24083488

RESUMEN

The lack of suitable acceptor (n-type) polymers has limited the photocurrent and efficiency of polymer/polymer bulk heterojunction (BHJ) solar cells. Here, we report an evaluation of three naphthalene diimide (NDI) copolymers as electron acceptors in BHJ solar cells which finds that all-polymer solar cells based on an NDI-selenophene copolymer (PNDIS-HD) acceptor and a thiazolothiazole copolymer (PSEHTT) donor exhibit a record 3.3% power conversion efficiency. The observed short circuit current density of 7.78 mA/cm(2) and external quantum efficiency of 47% are also the best such photovoltaic parameters seen in all-polymer solar cells so far. This efficiency is comparable to the performance of similarly evaluated [6,6]-Phenyl-C61-butyric acid methyl ester (PC60BM)/PSEHTT devices. The lamellar crystalline morphology of PNDIS-HD, leading to balanced electron and hole transport in the polymer/polymer blend solar cells accounts for its good photovoltaic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA