Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Sci ; 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611543

RESUMEN

Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well-being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline-specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph-based "Translator" system capable of integrating existing biomedical data sets and "translating" those data into insights intended to augment human reasoning and accelerate translational science. Having demonstrated feasibility of the Translator system, the Translator program has since moved into development, and the Translator Consortium has made significant progress in the research, design, and implementation of an operational system. Herein, we describe the current system's architecture, performance, and quality of results. We apply Translator to several real-world use cases developed in collaboration with subject-matter experts. Finally, we discuss the scientific and technical features of Translator and compare those features to other state-of-the-art, biomedical graph-based question-answering systems.

2.
FASEB J ; 24(9): 3427-37, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20466878

RESUMEN

Rhabdomyosarcoma is the most common soft tissue sarcoma in the pediatric population. As this tumor has an undifferentiated myogenic phenotype, agents that promote differentiation hold particular promise as part of a novel therapeutic approach to combat this type of cancer. In this report, we focus on the contribution of two microRNAs (miRNAs) in rhabdomyosarcomas. Levels of miR-1 and miR-133a are drastically reduced in representative cell lines from each major rhabdomyosarcoma subtype (embryonal and alveolar). Introduction of miR-1 and miR-133a into an embryonal rhabdomyosarcoma-derived cell line is cytostatic, thereby suggesting a tumor suppressor-like role for these myogenic miRNAs. Transcriptional profiling of cells after miR-1 and miR-133a expression reveals that miR-1 (but not miR-133a) exerts a strong promyogenic influence on these poorly differentiated tumor cells. We identify mRNAs that are down-regulated by these miRNAs and propose roles for miR-1 and miR-133a in repressing isoforms of genes that are normally not expressed in muscle. Finally, we show that mRNA targets of miR-1 and miR-133a are up-regulated in rhabdomyosarcomas, suggesting a causative role for these miRNAs in the development of rhabdomyosarcomas. More important, these results point to the promise of enhancing rhabdomyosarcoma therapy using miRNAs as agents that mediate cytostasis and promote muscle differentiation.


Asunto(s)
MicroARNs/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...