Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 130
1.
Pain ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691673

ABSTRACT: Adenosine receptors are a family of purinergic G protein-coupled receptors that are widely distributed in bodily organs and in the peripheral and central nervous systems. Recently, antihyperalgesic actions have been suggested for the adenosine A3 receptor, and its agonists have been proposed as new neuropathic pain treatments. We hypothesized that these receptors may be expressed in nociceptive primary afferent neurons. However, RNA sequencing across species, eg, rat, mouse, dog, and human, suggests that dorsal root ganglion (DRG) expression of ADORA3 is inconsistent. In rat and mouse, Adora3 shows very weak to no expression in DRG, whereas it is well expressed in human DRG. However, the cell types in human DRG that express ADORA3 have not been delineated. An examination of DRG cell types using in situ hybridization clearly detected ADORA3 transcripts in peripheral macrophages that are in close apposition to the neuronal perikarya but not in peripheral sensory neurons. By contrast, ADORA1 was found primarily in neurons, where it is broadly expressed at low levels. These results suggest that a more complex or indirect mechanism involving modulation of macrophage and/or microglial cells may underlie the potential analgesic action of adenosine A3 receptor agonism.

2.
Curr Opin Pharmacol ; 75: 102447, 2024 Apr.
Article En | MEDLINE | ID: mdl-38471384

Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.


Musculoskeletal Pain , Neuralgia , Transient Receptor Potential Channels , Humans , Capsaicin , Neuralgia/drug therapy , TRPV Cation Channels , TRPA1 Cation Channel
3.
JCI Insight ; 9(4)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38261410

Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.


Williams Syndrome , Child , Humans , Ganglia, Spinal , Neurons , Pain/genetics , Synaptic Transmission , Williams Syndrome/genetics
4.
Exp Neurol ; 370: 114552, 2023 12.
Article En | MEDLINE | ID: mdl-37793538

Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.


Hereditary Sensory and Autonomic Neuropathies , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Ganglia, Spinal/metabolism , Minor Histocompatibility Antigens/genetics , Intracellular Signaling Peptides and Proteins , Lysine/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , Pain
5.
bioRxiv ; 2023 Jun 22.
Article En | MEDLINE | ID: mdl-37502949

Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies. In particular, BRCA1 accumulation within neurofibrillary tangles and colocalization with tau aggregates in the cytoplasm of AD patients implicates the involvement of mutant forms of BRCA1/BARD1 proteins in disease pathogenesis. The purpose of this study is to show that the location of mutations in the translated BARD1, specifically within ankyrin repeats, has strong correlation with the Cdk5 motifs for phosphorylation. Mapping of the mutation sites on the protein's three-dimensional structure and estimation of the backbone dihedral angles show transitions between the canonical helical and extended conformations of the tetrapeptide sequence of ankyrin repeats. Clustering of mutations in BARD1 ankyrin repeats near the N-termini of the helices with T/SXXH motifs provides a basis for conformational transitions that might be necessary to ensure the compatibility of the substrate with active site geometry and accessibility of the substrate to the kinase. Ankyrin repeats are interaction sites for phosphorylation-dependent dynamic assembly of proteins including those involved in transcription regulation and signaling, and present potential targets for the design of new drugs.

6.
Biosensors (Basel) ; 13(3)2023 Feb 21.
Article En | MEDLINE | ID: mdl-36979515

Antibody measurements play a central role in the diagnosis of many autoimmune and infectious diseases. One antibody detection technology, Luciferase Immunoprecipitation Systems (LIPS), utilizes genetically encoded recombinant luciferase antigen fusion proteins in an immunoglobulin capture format to generate robust antibody measurement with high diagnostic sensitivity and specificity. The LIPS technology has been highly useful in detecting antibodies for research diagnostics and the discovery of new autoantigens. The methodology of the assay requires immunoglobulin binding reagents such as protein A/G beads and washing steps to process the immune complex before antibody levels are measured by light production with a luminometer. Recently, simplified mix and read immunoassays based on split components of the nanoluciferase enzyme in a complementation format have been developed for antibody measurements without requiring immunoglobulin-capturing beads or washing steps. The mix and read immunoassays utilize two or three nanoluciferase fragments which when reconstituted via antigen-specific antibody binding generate a functional enzyme. At present, these split luciferase tests have been developed mainly for detecting SARS-CoV-2 antibodies. Here, we describe the traditional LIPS technology and compare it to the new split luciferase methodologies focusing on their technical features, strengths, limitations, and future opportunities for diagnostic research, and clinical applications.


COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Luciferases/metabolism , Immunoassay , Antibodies, Viral
8.
Front Mol Neurosci ; 15: 926596, 2022.
Article En | MEDLINE | ID: mdl-35875671

Primary afferent neurons of the dorsal root ganglia (DRG) transduce peripheral nociceptive signals and transmit them to the spinal cord. These neurons also mediate analgesic control of the nociceptive inputs, particularly through the µ-opioid receptor (encoded by Oprm1). While opioid receptors are found throughout the neuraxis and in the spinal cord tissue itself, intrathecal administration of µ-opioid agonists also acts directly on nociceptive nerve terminals in the dorsal spinal cord resulting in marked analgesia. Additionally, selective chemoaxotomy of cells expressing the TRPV1 channel, a nonselective calcium-permeable ion channel that transduces thermal and inflammatory pain, yields profound pain relief in rats, canines, and humans. However, the relationship between Oprm1 and Trpv1 expressing DRG neurons has not been precisely determined. The present study examines rat DRG neurons using high resolution multiplex fluorescent in situ hybridization to visualize molecular co-expression. Neurons positive for Trpv1 exhibited varying levels of expression for Trpv1 and co-expression of other excitatory and inhibitory ion channels or receptors. A subpopulation of densely labeled Trpv1+ neurons did not co-express Oprm1. In contrast, a population of less densely labeled Trpv1+ neurons did co-express Oprm1. This finding suggests that the medium/low Trpv1 expressing neurons represent a specific set of DRG neurons subserving the opponent processes of both transducing and inhibiting nociceptive inputs. Additionally, the medium/low Trpv1 expressing neurons co-expressed other markers implicated in pathological pain states, such as Trpa1 and Trpm8, which are involved in chemical nociception and cold allodynia, respectively, as well as Scn11a, whose mutations are implicated in familial episodic pain. Conversely, none of the Trpv1+ neurons co-expressed Spp1, which codes for osteopontin, a marker for large diameter proprioceptive neurons, validating that nociception and proprioception are governed by separate neuronal populations. Our findings support the hypothesis that the population of Trpv1 and Oprm1 coexpressing neurons may explain the remarkable efficacy of opioid drugs administered at the level of the DRG-spinal synapse, and that this subpopulation of Trpv1+ neurons is responsible for registering tissue damage.

9.
Front Mol Neurosci ; 15: 892345, 2022.
Article En | MEDLINE | ID: mdl-35706427

Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.

10.
J Pain ; 23(10): 1646-1650, 2022 10.
Article En | MEDLINE | ID: mdl-35504570

The strong need for a new foundational molecular framework for human nervous system research at the nociceptive level is now matched by comprehensive and quantitative capabilities for analyzing nociceptive tissues such as pathologic peripheral tissue, damaged peripheral nerve, dorsal root ganglia, spinal cord, and brain, where possible. However, this idea must be matched by equally strong organization and infrastructures for multisite tissue recovery, molecular analyses, data sharing, and long-term archiving. Experience from other human tissue analysis projects shows that a decades-long activity may be expected, hence "Be in it for the long haul." While certain milestones can be met fairly quickly, others aimed at molecular and neuroanatomical characterization of chronic pain disorders will require the sustained attention of the groups involved. This can yield a valuable addition to basic and translational pain research and the development of new treatments whose targets are validated directly in humans. PERSPECTIVE: A concerted effort is needed to build human nociceptive tissue banks for multi-omic research. In addition to collecting tissue, a careful characterization of pain problems from donors is essential, as is a parallel effort to assess their concurrent medical problems, medications, and the many variables of general human activity and lifestyle that can impact the results. Given the projected long time frame, in addition to maintaining funding, sustaining motivation and momentum are critical factors for success.


Chronic Pain , Ganglia, Spinal , Humans , Spinal Cord
11.
Sci Rep ; 12(1): 4729, 2022 03 18.
Article En | MEDLINE | ID: mdl-35304484

Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.


Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Neuralgia , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/genetics , Ganglia, Spinal , Gene Expression Profiling , Inflammation/genetics , Neuralgia/genetics , Sensory Receptor Cells , Transcriptome
12.
FASEB J ; 35(10): e21852, 2021 10.
Article En | MEDLINE | ID: mdl-34499774

Postoperative pain and delayed healing in surgical wounds, which require complex management strategies have understudied complicated mechanisms. Here we investigated temporal changes in behavior, tissue structure, and transcriptomic profiles in a rat model of a surgical incision, using hyperalgesic behavioral tests, histological analyses, and next-generation RNA sequencing, respectively. The most rapidly (1 hour) expressed genes were the chemokines, Cxcl1 and Cxcl2. Consequently, infiltrating leukocytes were abundantly observed starting at 6 and peaking at 24 hours after incising which was supported by histological analysis and appearance of the neutrophil markers, S100a8 and S100a9. At this time, hyperalgesia was at a peak and overall transcriptional activity was most highly activated. At the 1-day timepoint, Nppb, coding for natriuretic peptide precursor B, was the most strongly upregulated gene and was localized by in situ hybridization to the epidermal keratinocytes at the margins of the incision. Nppb was basically unaffected in a peripheral inflammation model transcriptomic dataset. At the late phase of wound healing, five secreted, incision-specific peptidases, Mmp2, Aebp1, Mmp23, Adamts7, and Adamtsl1, showed increased expression, supporting the idea of a sustained tissue remodeling process. Transcripts that are specifically upregulated at each timepoint in the incision model may be potential candidates for either biomarkers or therapeutic targets for wound pain and wound healing. This study incorporates the examination of longitudinal temporal molecular responses, corresponding anatomical localization, and hyperalgesic behavioral alterations in the surgical incision model that together provide important and novel foundational knowledge to understand mechanisms of wound pain and wound healing.


Hyperalgesia/pathology , Pain, Postoperative/pathology , Plantar Plate/physiology , RNA-Seq/methods , Surgical Wound/complications , Transcriptome , Wound Healing , Animals , Behavior, Animal , Edema/etiology , Edema/metabolism , Edema/pathology , Hyperalgesia/etiology , Hyperalgesia/metabolism , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Pain, Postoperative/etiology , Pain, Postoperative/metabolism , Rats , Rats, Sprague-Dawley
13.
Front Pharmacol ; 12: 705743, 2021.
Article En | MEDLINE | ID: mdl-34421597

One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.

14.
J Pain ; 22(10): 1146-1179, 2021 10.
Article En | MEDLINE | ID: mdl-33892151

During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.


Anaplastic Lymphoma Kinase/metabolism , Chronic Pain/metabolism , Hyperalgesia/metabolism , Neuroinflammatory Diseases/metabolism , Peripheral Nerve Injuries/metabolism , Posterior Horn Cells/metabolism , Transcriptome/physiology , Animals , Chronic Pain/immunology , Disease Models, Animal , Hyperalgesia/immunology , Neuroinflammatory Diseases/immunology , Peripheral Nerve Injuries/immunology , Posterior Horn Cells/immunology , Rats , Sequence Analysis, RNA
15.
Front Immunol ; 12: 548469, 2021.
Article En | MEDLINE | ID: mdl-33763057

Detecting autoantibodies provides foundational information for the diagnosis of most autoimmune diseases. An important pathophysiological distinction is whether autoantibodies are directed against extracellular or intracellular proteins. Autoantibodies targeting extracellular domains of proteins, such as membrane receptors, channels or secreted molecules are often directly pathogenic, whereby autoantibody binding to the autoantigen disrupts the normal function of a critical protein or pathway, and/or triggers antibody-dependent cell surface complement killing. By comparison, autoantibodies directed against intracellular proteins are recognized as useful diagnostic biomarkers of abnormal autoimmune activity, but the link between antigenicity and pathogenicity is less straightforward. Because intracellular autoantigens are generally inaccessible to autoantibody binding, for the most part, they do not directly contribute to pathogenesis. In a few diseases, autoantibodies to intracellular targets cause damage indirectly by immune complex formation, immune activation, and other processes. In this review, the general features of and differences between autoimmune diseases segregated on the basis of intracellular or extracellular autoantigens are explored using over twenty examples. Expression profiles of autoantigens in relation to the tissues targeted by autoimmune disease and the temporal appearance of autoantibodies before clinical diagnosis often correlate with whether the respective autoantibodies mostly recognize either intracellular or extracellular autoantigens. In addition, current therapeutic strategies are discussed from this vantage point. One drug, rituximab, depletes CD20+ B-cells and is highly effective for autoimmune disorders associated with autoantibodies against extracellular autoantigens. In contrast, diseases associated with autoantibodies directed predominately against intracellular autoantigens show much more complex immune cell involvement, such as T-cell mediated tissue damage, and require different strategies for optimal therapeutic benefit. Understanding the clinical ramifications of autoimmunity derived by autoantibodies against either intracellular or extracellular autoantigens, or a spectrum of both, has practical implications for guiding drug development, generating monitoring tools, stratification of patient interventions, and designing trials based on predictive autoantibody profiles for autoimmune diseases.


Autoantibodies/immunology , Autoantigens/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , Proteins/immunology , Autoantibodies/metabolism , Autoantigens/metabolism , Autoimmune Diseases/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Extracellular Space/immunology , Extracellular Space/metabolism , Humans , Intracellular Space/immunology , Intracellular Space/metabolism , Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
J Pain ; 22(3): 275-299, 2021 03.
Article En | MEDLINE | ID: mdl-33031942

Oxylipins are lipid peroxidation products that participate in nociceptive, inflammatory, and vascular responses to injury. Effects of oxylipins depend on tissue-specific differences in accumulation of precursor polyunsaturated fatty acids and the expression of specific enzymes to transform the precursors. The study of oxylipins in nociception has presented technical challenges leading to critical knowledge gaps in the way these molecules operate in nociception. We applied a systems-based approach to characterize oxylipin precursor fatty acids, and expression of genes coding for proteins involved in biosynthesis, transport, signaling and inactivation of pro- and antinociceptive oxylipins in pain circuit tissues. We further linked these pathways to nociception by demonstrating intraplantar carrageenan injection induced gene expression changes in oxylipin biosynthetic pathways. We determined functional-biochemical relevance of the proposed pathways in rat hind paw and dorsal spinal cord by measuring basal and stimulated levels of oxylipins throughout the time-course of carrageenan-induced inflammation. Finally, when oxylipins were administered by intradermal injection we observed modulation of nociceptive thermal hypersensitivity, providing a functional-behavioral link between oxylipins, their molecular biosynthetic pathways, and involvement in pain and nociception. Together, these findings advance our understanding of molecular lipidomic systems linking oxylipins and their precursors to nociceptive and inflammatory signaling pathways in rats. PERSPECTIVE: We applied a systems approach to characterize molecular pathways linking precursor lipids and oxylipins to nociceptive signaling. This systematic, quantitative evaluation of the molecular pathways linking oxylipins to nociception provides a framework for future basic and clinical research investigating the role of oxylipins in pain.


Gene Expression/drug effects , Hyperalgesia/chemically induced , Nociception/drug effects , Oxylipins/metabolism , Oxylipins/pharmacology , Signal Transduction/drug effects , Animals , Carrageenan/administration & dosage , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Lipidomics , Male , Oxylipins/administration & dosage , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , Transcriptome
18.
J Pain ; 22(3): 322-343, 2021 03.
Article En | MEDLINE | ID: mdl-33227508

Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.


Gene Expression Profiling , Hyperalgesia/immunology , Immunity, Innate/immunology , Inflammation/immunology , Nociceptive Pain/immunology , Secretome/immunology , Animals , Carrageenan/pharmacology , Disease Models, Animal , Foot , Hyperalgesia/chemically induced , Inflammation/chemically induced , Male , Nociceptive Pain/chemically induced , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA
20.
Nat Rev Neurol ; 16(7): 381-400, 2020 07.
Article En | MEDLINE | ID: mdl-32541893

Pain medication plays an important role in the treatment of acute and chronic pain conditions, but some drugs, opioids in particular, have been overprescribed or prescribed without adequate safeguards, leading to an alarming rise in medication-related overdose deaths. The NIH Helping to End Addiction Long-term (HEAL) Initiative is a trans-agency effort to provide scientific solutions to stem the opioid crisis. One component of the initiative is to support biomarker discovery and rigorous validation in collaboration with industry leaders to accelerate high-quality clinical research into neurotherapeutics and pain. The use of objective biomarkers and clinical trial end points throughout the drug discovery and development process is crucial to help define pathophysiological subsets of pain, evaluate target engagement of new drugs and predict the analgesic efficacy of new drugs. In 2018, the NIH-led Discovery and Validation of Biomarkers to Develop Non-Addictive Therapeutics for Pain workshop convened scientific leaders from academia, industry, government and patient advocacy groups to discuss progress, challenges, gaps and ideas to facilitate the development of biomarkers and end points for pain. The outcomes of this workshop are outlined in this Consensus Statement.


Chronic Pain/blood , Chronic Pain/diagnostic imaging , National Institutes of Health (U.S.)/trends , Pain Management/methods , Pain Management/trends , Analgesics, Opioid/adverse effects , Biomarkers/blood , Chronic Pain/genetics , Chronic Pain/therapy , Education/methods , Education/trends , Humans , Neuroimaging/methods , Opioid Epidemic/prevention & control , Opioid Epidemic/trends , Opioid-Related Disorders/blood , Opioid-Related Disorders/diagnostic imaging , Opioid-Related Disorders/genetics , Opioid-Related Disorders/therapy , Treatment Outcome , United States
...