Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 190(4): 1447-58, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18065529

RESUMEN

Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-A resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of approximately 400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.


Asunto(s)
Proteínas Bacterianas/química , Transferasas de Carboxilo y Carbamoilo/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calorimetría , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
2.
J Biol Chem ; 280(52): 42919-28, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16253988

RESUMEN

Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 A resolution, respectively. YdiF is organized into tetramers, with each monomer having an open alpha/beta structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent gamma-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.


Asunto(s)
Coenzima A Transferasas/química , Coenzima A/química , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ésteres/química , Ácido Glutámico/química , Sitios de Unión , Ácidos Carboxílicos/química , Catálisis , Dominio Catalítico , Cromatografía en Gel , Clonación Molecular , Coenzima A Transferasas/metabolismo , Cristalización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Histidina/química , Espectrometría de Masas , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
3.
Biochemistry ; 44(15): 5728-38, 2005 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15823031

RESUMEN

L-Carnitine (R-[-]-3-hydroxy-4-trimethylaminobutyrate) is found in both eukaryotic and prokaryotic cells and participates in diverse processes including long-chain fatty-acid transport and osmoprotection. The enzyme crotonobetainyl/gamma-butyrobetainyl-CoA:carnitine CoA-transferase (CaiB; E.C. 2.8.3.-) catalyzes the first step in carnitine metabolism, leading to the final product gamma-butyrobetaine. The crystal structures of Escherichia coli apo-CaiB, as well as its Asp169Ala mutant bound to CoA and to carnitinyl-CoA, have been determined and refined to 1.6, 2.4, and 2.4 A resolution, respectively. CaiB is composed of two identical circular chains that together form an intertwined dimer. Each monomer consists of a large domain, containing a Rossmann fold, and a small domain. The monomer and dimer resemble those of formyl-CoA transferase from Oxalobacter formigenes, as well as E. coli YfdW, a putative type-III CoA transferase of unknown function. The CoA cofactor-binding site is formed at the interface of the large domain of one monomer and the small domain from the second monomer. Most of the protein-CoA interactions are formed with the Rossmann fold domain. While the location of cofactor binding is similar in the three proteins, the specific CoA-protein interactions vary somewhat between CaiB, formyl-CoA transferase, and YfdW. CoA binding results in a change in the relative positions of the large and small domains compared with apo-CaiB. The observed carnitinyl-CoA product in crystals of the CaiB Asp169Ala mutant cocrystallized with crotonoyl-CoA and carnitine could result from (i) a catalytic mechanism involving a ternary enzyme-substrate complex, independent of a covalent anhydride intermediate with Asp169, (ii) a spontaneous reaction of the substrates in solution, followed by binding to the enzyme, or (iii) an involvement of another residue substituting functionally for Asp169, such as Glu23.


Asunto(s)
Coenzima A Transferasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Carnitina/análogos & derivados , Carnitina/química , Dominio Catalítico , Coenzima A/química , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 102(8): 2790-5, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15699339

RESUMEN

The neuronal Na(+)/H(+) exchanger NHE5 isoform not only resides in the plasma membrane but also accumulates in recycling vesicles by means of clathrin-mediated endocytosis. To further investigate the underlying molecular mechanisms, a human brain cDNA library was screened for proteins that interact with the cytoplasmic C-terminal region of NHE5 by using yeast two-hybrid methodology. One candidate cDNA identified by this procedure encoded beta-arrestin2, a specialized adaptor/scaffolding protein required for internalization and signaling of members of the G protein-coupled receptor superfamily. Direct interaction between the two proteins was demonstrated in vitro by GST fusion protein pull-down assays. Sequences within the N-terminal receptor activation-recognition domain and the C-terminal secondary receptor-binding domain of beta-arrestin2 conferred strong binding to the C terminus of NHE5. Full-length NHE5 and beta-arrestin2 also associated in intact cells, as revealed by their coimmunoprecipitation from extracts of transfected CHO cells. Moreover, ectopic expression of both proteins caused a redistribution of beta-arrestin2 from the cytoplasm to vesicles containing NHE5, and significantly decreased the abundance of the transporter at the cell surface. Comparable results were also obtained for the beta-arrestin1 isoform. These data reveal a broader role for arrestins in the trafficking of integral plasma membrane proteins than previously recognized.


Asunto(s)
Arrestinas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Arrestinas/química , Sitios de Unión , Células CHO , Cricetinae , Humanos , Proteínas de la Membrana , Fosforilación , Isoformas de Proteínas , Transporte de Proteínas , Intercambiadores de Sodio-Hidrógeno/análisis , Transfección , beta-Arrestinas
5.
Artículo en Inglés | MEDLINE | ID: mdl-16511004

RESUMEN

The gene mdaB from Escherichia coli encodes an enzyme with activity similar to that of mammalian DT-diaphorase. It has been reported that the protein is able to confer resistance to the antibiotics DMP 840, adriamycin and etoposide. The gene was cloned and overexpressed in E. coli, allowing purification of the protein to homogeneity. The protein co-purified with an unidentified flavin. Suitable crystals for X-ray diffraction experiments were obtained by hanging-drop vapour diffusion. Their space group was triclinic P1, with unit-cell parameters a = 48.664, b = 52.099, c = 86.584 A, alpha = 87.106, beta = 86.889, gamma = 63.526 degrees. X-ray diffraction data were collected to 2.5 A.


Asunto(s)
Proteínas de Escherichia coli/química , Secuencia de Bases , Clonación Molecular , Cristalografía por Rayos X , Cartilla de ADN , Resistencia a Antineoplásicos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Difracción de Rayos X
6.
J Bacteriol ; 186(20): 6915-27, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15466045

RESUMEN

Intracellular glucose in Escherichia coli cells imported by phosphoenolpyruvate-dependent phosphotransferase system-independent uptake is phosphorylated by glucokinase by using ATP to yield glucose-6-phosphate. Glucokinases (EC 2.7.1.2) are functionally distinct from hexokinases (EC 2.7.1.1) with respect to their narrow specificity for glucose as a substrate. While structural information is available for ADP-dependent glucokinases from Archaea, no structural information exists for the large sequence family of eubacterial ATP-dependent glucokinases. Here we report the first structure determination of a microbial ATP-dependent glucokinase, that from E. coli O157:H7. The crystal structure of E. coli glucokinase has been determined to a 2.3-A resolution (apo form) and refined to final Rwork/Rfree factors of 0.200/0.271 and to 2.2-A resolution (glucose complex) with final Rwork/Rfree factors of 0.193/0.265. E. coli GlK is a homodimer of 321 amino acid residues. Each monomer folds into two domains, a small alpha/beta domain (residues 2 to 110 and 301 to 321) and a larger alpha+beta domain (residues 111 to 300). The active site is situated in a deep cleft between the two domains. E. coli GlK is structurally similar to Saccharomyces cerevisiae hexokinase and human brain hexokinase I but is distinct from the ADP-dependent GlKs. Bound glucose forms hydrogen bonds with the residues Asn99, Asp100, Glu157, His160, and Glu187, all of which, except His160, are structurally conserved in human hexokinase 1. Glucose binding results in a closure of the small domains, with a maximal Calpha shift of approximately 10 A. A catalytic mechanism is proposed that is consistent with Asp100 functioning as the general base, abstracting a proton from the O6 hydroxyl of glucose, followed by nucleophilic attack at the gamma-phosphoryl group of ATP, yielding glucose-6-phosphate as the product.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli O157/enzimología , Glucoquinasa/química , Glucosa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Dimerización , Glucoquinasa/metabolismo , Humanos , Modelos Moleculares
7.
Protein Sci ; 13(11): 3006-16, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15459342

RESUMEN

The crystal structure of the flavoprotein Pad1 from Escherichia coli O157:H7 complexed with the cofactor FMN has been determined by the multiple anomalous diffraction method and refined at 2.0 A resolution. This protein is a paralog of UbiX (3-octaprenyl-4-hydroxybenzoate carboxylyase, 51% sequence identity) that catalyzes the third step in ubiquinone biosynthesis and to Saccharomyces cerevisiae Pad1 (54% identity), an enzyme that confers resistance to the antimicrobial compounds phenylacrylic acids through decarboxylation of these compounds. Each Pad1 monomer consists of a typical Rossmann fold containing a non-covalently bound molecule of FMN. The fold of Pad1 is similar to MrsD, an enzyme associated with lantibiotic synthesis; EpiD, a peptidyl-cysteine decarboxylase; and AtHAL3a, the enzyme, which decarboxylates 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine during coenzyme A biosynthesis, all with a similar location of the FMN binding site at the interface between two monomers, yet each having little sequence similarity to one another. All of these proteins associate into oligomers, with a trimer forming the common structural unit in each case. In MrsD and EpiD, which belong to the homo-dodecameric flavin-containing cysteine decarboxylase (HFCD) family, these trimers associate further into dodecamers. Pad1 also forms dodecamers, although the association of the trimers is completely different, resulting in exposure of a different side of the trimer unit to the solvent. This exposure affects the location of the substrate binding site and, specifically, its access to the FMN cofactor. Therefore, Pad1 forms a separate family, distinguishable from the HFCD family.


Asunto(s)
Carboxiliasas/química , Cristalografía por Rayos X , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Proteínas de Arabidopsis/química , Proteínas Bacterianas/química , Dimerización , Mononucleótido de Flavina/química , Flavoproteínas/química , Homología Estructural de Proteína
8.
BMC Struct Biol ; 4: 9, 2004 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-15306028

RESUMEN

BACKGROUND: ChaB is a putative regulator of ChaA, a Na+/H+ antiporter that also has Ca+/H+ activity in E. coli. ChaB contains a conserved 60-residue region of unknown function found in other bacteria, archaeabacteria and a series of baculoviral proteins. As part of a structural genomics project, the structure of ChaB was elucidated by NMR spectroscopy. RESULTS: The structure of ChaB is composed of 3 alpha-helices and a small sheet that pack tightly to form a fold that is found in the cyclin-box family of proteins. CONCLUSION: ChaB is distinguished from its putative DNA binding sequence homologues by a highly charged flexible loop region that has weak affinity to Mg2+ and Ca2+ divalent metal ions.


Asunto(s)
Proteínas de Escherichia coli/química , Cationes/metabolismo , Clonación Molecular/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/fisiología , Intercambiador de Sodio-Calcio/fisiología
9.
J Mol Biol ; 335(1): 87-101, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14659742

RESUMEN

Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.


Asunto(s)
Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Hidroliasas/química , Dominio Catalítico , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Liasas Intramoleculares/química , Transferasas Intramoleculares , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , ARN Ribosómico 23S/metabolismo , Homología Estructural de Proteína
10.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 12): 2348-52, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14646116

RESUMEN

The crystal structure of Escherichia coli MobB, an enzyme involved in the final step of molybdenum-cofactor biosynthesis, forms intertwined dimers. Each molecule consists of two segments and requires the second monomer for stable folding. Dimerization buries a quarter of the solvent-accessible area of the monomer. These dimers assemble into a hexagonal lattice with P6(4)22 symmetry and occupy only approximately 25% of the unit-cell volume. The symmetry-related dimers associate tightly into a helical structure with a diameter of 250 A and a pitch of 98 A. Two such helices are intertwined, shifted by 49 A along the sixfold axis. Within the crystal, these helices form thin-walled cylinders with an external diameter of 250 A and an internal diameter of 190 A. Their center is filled with solvent. These cylinders pack closely together, forming a hexagonal lattice with the highest possible packing density. This arrangement of dimers allows extensive intermolecular contacts with 75% solvent content in the crystal.


Asunto(s)
Escherichia coli/química , Transactivadores/química , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Selenometionina/química , Solventes , Transactivadores/genética
11.
J Bacteriol ; 185(14): 4204-10, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12837795

RESUMEN

The structure of the recombinant Escherichia coli protein YbcJ, a representative of a conserved family of bacterial proteins (COG2501), was determined by nuclear magnetic resonance. The fold of YbcJ identified it as a member of the larger family of S4-like RNA binding domains. These domains bind to structured RNA, such as that found in tRNA, rRNA, and a pseudoknot of mRNA. The structure of YbcJ revealed a highly conserved patch of basic residues, comprising amino acids K26, K38, R55, K56, and K59, which likely participate in RNA binding.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...