Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Brain ; 146(11): 4690-4701, 2023 11 02.
Article En | MEDLINE | ID: mdl-37450572

Intracerebral haemorrhage is an unmet medical need affecting more than 3 million people worldwide every year and leading to the formation of an intracerebral haematoma. Updated guidelines (2022) for the management of intracerebral haemorrhage patients recognize that minimally invasive approaches for the evacuation of supratentorial intracerebral haemorrhage have demonstrated reductions in mortality compared with medical management alone. However, improvement of functional outcome with a procedure involving thrombolytic therapy was neutral in the last large phase 3 clinical trial and requires a more effective and safer thrombolytic agent than those currently available. Here, we demonstrate that O2L-001 allows for the extended release of W253R/R275S recombinant tissue-type plasminogen activator (rtPA). A new rtPA variant, called optimized tPA (OptPA), offers improved efficacy for haematoma evacuation as well as improved safety. OptPA was produced in a Chinese hamster ovary cell line before purification, nanoprecipitation using the NANOp2Lysis® technological platform followed by suspension in a solution of 17% poloxamer 407 to obtain O2L-001. Plasmin generation assays were performed to demonstrate O2L-001 safety. Ex vivo haematoma models using human blood were used to demonstrate O2L-001 thrombolysis properties and efficacy. For the best translational significance, a clinical sized haematoma was used to ensure catheter placement and to allow administration of the thrombolytic agent into the core of the haematoma via a minimally invasive procedure. The capacity of OptPA to convert plasminogen into plasmin is strongly decreased compared to rtPA, thereby reducing potential bleeding events. However, a clot lysis assay showed that OptPA had the same fibrinolytic activity as rtPA. We demonstrated that long-term exposure to a thrombolytic agent was essential to achieve high thrombolysis efficacy. Indeed, 24 h continuous exposure to 0.1 µg/ml rtPA had similar efficacy than repeated short exposure to 30 µg/ml rtPA. This finding led to the development of O2L-001, allowing the extended release of OptPA in the first 6 h following injection. An ex vivo model using human blood was used to demonstrate O2L-001 efficacy. Interestingly, unlike rtPA, O2L-001 was able to induce the complete lysis of the 5 ml haematoma. In clinical sized haematomas (obtained from 30 ml of human blood), a single injection of O2L-001 at 1 mg/ml into the core of the haematoma led to a 44% increase in thrombolysis compared to rtPA. Taken together, these results demonstrate that O2L-001 provides new hope for haematoma evacuation and the treatment of patients with intracerebral haemorrhage.


Fibrinolysin , Fibrinolytic Agents , Animals , Cricetinae , Humans , Fibrinolytic Agents/therapeutic use , Fibrinolysin/therapeutic use , CHO Cells , Cricetulus , Tissue Plasminogen Activator/therapeutic use , Cerebral Hemorrhage/drug therapy , Thrombolytic Therapy , Hematoma/drug therapy
2.
Front Plant Sci ; 11: 1024, 2020.
Article En | MEDLINE | ID: mdl-32765546

This study presents a novel three-dimensional (3D) tool "3D in vitro choice" for chemotaxis assays with cyst nematodes. The original 3D in vitro choice was customized through digital printing. Freshly hatched second stage juveniles (J2s) of the cyst nematode Globodera pallida were used as the nematode model to illustrate chemo-orientation behavior in the 3D system. The efficiency and reliability of the 3D in vitro choice were validated with 2% Phytagel as navigation medium, in three biological assays and using tomato root exudates or potato root border cells and their associated mucilage as a positive attractant as compared with water. For each biological assay, J2s were hatched from the same population of a single generation glasshouse-cultured cysts. This novel easy to use and low-cost 3d-device could be a useful replacement to Petri dishes assays in nematode behavioral studies due to the ease of deposition of nematodes and test substances, coupled with its distinctive zones that allow for precision in choice making by the nematodes.

3.
Front Plant Sci ; 11: 602825, 2020.
Article En | MEDLINE | ID: mdl-33488649

Cyst nematodes account for substantial annual yield losses in crop production worldwide. Concerns over environmental and health issues due to the use of chemical nematicides mean alternative sustainable and integrated solutions are urgently required. Hatch induction of encysted eggs in the absence of host plants, i.e., 'suicide-hatching,' could be a sustainable alternative in reducing population densities of cyst nematodes in infested soils. Here we examined in situ hatching of encysted eggs of Globodera pallida, Heterodera carotae, and Heterodera schachtii at varying soil depths, following exogenous applications of host root exudates in repeated glasshouse experiments. Cysts were retrieved 30 or 43 days post-incubation depending on the nematode species and assessed for hatching rates relative to the initial number of viable eggs per cyst. Hatching of the potato cyst nematode G. pallida depended on both soil moisture and effective exposure to root exudates, and to a lesser extent on exudate concentration. The carrot cyst nematode H. carotae had over 75% hatched induced by root exudate irrespective of the concentration, with better hatch induction at 20 cm as compared with 10 cm soil depth. Hatching of the beet cyst nematode H. schachtii largely depended on the soil moisture level at constant temperature, rather than the type or concentration of root exudates applied. As a conclusion, exogenously applied host root exudates may play a major role in inducing in situ hatch of encysted eggs of potato and carrot cyst nematodes in the absence of host plant under favorable soil temperature/moisture conditions. To improve such strategy, the characterization of chemical profiles of the root exudate composition and field validation are currently ongoing.

...