Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 14256, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220799

RESUMEN

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.


Asunto(s)
Caenorhabditis/efectos de los fármacos , Antecedentes Genéticos , Longevidad/efectos de los fármacos , Compuestos Orgánicos/farmacología , Animales , Benzotiazoles , Caenorhabditis/clasificación , Caenorhabditis/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Relación Dosis-Respuesta a Droga , Fertilidad/efectos de los fármacos , Fertilidad/genética , Longevidad/genética , Reproducibilidad de los Resultados , Especificidad de la Especie , Tiazoles/farmacología
2.
J Vis Exp ; (118)2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-28060275

RESUMEN

Dissecting the neuronal and neuromuscular circuits that regulate behavior remains a major challenge in biology. The nematode Caenorhabditis elegans has proven to be an invaluable model organism in helping to tackle this challenge, from inspiring technological approaches, building the human brain connectome, to actually shedding light on the specific molecular drivers of basic functional patterns. The bulk of the behavioral studies in C. elegans have been performed on solid substrates. In liquid, animals exhibit behavioral patterns that include movement at a range of speeds in 3D, as well as partial body movements, such as a posterior curl without anterior shape change, which introduce new challenges for quantitation. The steps of a simple procedure, and use of a software that enables high-resolution analysis of C. elegans swim behavior, are presented here. The software, named CeleST, uses a specialized computer program that tracks multiple animals simultaneously and provides novel measures of C. elegans locomotion in liquid (swimming). The measures are mostly grounded in animal posture and based on mathematics used in computer vision and pattern recognition, without computational requirements for threshold cut-offs. The software tool can be used to both assess overall swimming prowess in hundreds of animals from combined small batch trials and to reveal novel phenotypes even in well-characterized genetic mutants. The preparation of specimens for analysis with CeleST is simple and low-tech, enabling wide adaptation by the scientific community. Use of the computational approach described here should therefore contribute to the greater understanding of behavior and behavioral circuits in the C. elegans model.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/fisiología , Programas Informáticos , Natación , Animales
3.
PLoS Comput Biol ; 10(7): e1003702, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033081

RESUMEN

In the effort to define genes and specific neuronal circuits that control behavior and plasticity, the capacity for high-precision automated analysis of behavior is essential. We report on comprehensive computer vision software for analysis of swimming locomotion of C. elegans, a simple animal model initially developed to facilitate elaboration of genetic influences on behavior. C. elegans swim test software CeleST tracks swimming of multiple animals, measures 10 novel parameters of swim behavior that can fully report dynamic changes in posture and speed, and generates data in several analysis formats, complete with statistics. Our measures of swim locomotion utilize a deformable model approach and a novel mathematical analysis of curvature maps that enable even irregular patterns and dynamic changes to be scored without need for thresholding or dropping outlier swimmers from study. Operation of CeleST is mostly automated and only requires minimal investigator interventions, such as the selection of videotaped swim trials and choice of data output format. Data can be analyzed from the level of the single animal to populations of thousands. We document how the CeleST program reveals unexpected preferences for specific swim "gaits" in wild-type C. elegans, uncovers previously unknown mutant phenotypes, efficiently tracks changes in aging populations, and distinguishes "graceful" from poor aging. The sensitivity, dynamic range, and comprehensive nature of CeleST measures elevate swim locomotion analysis to a new level of ease, economy, and detail that enables behavioral plasticity resulting from genetic, cellular, or experience manipulation to be analyzed in ways not previously possible.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Natación/fisiología , Animales , Caenorhabditis elegans , Bases de Datos Factuales , Modelos Biológicos , Fenotipo
4.
Exp Gerontol ; 48(11): 1156-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23916839

RESUMEN

Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.


Asunto(s)
Envejecimiento/fisiología , Caenorhabditis elegans/fisiología , Fertilidad/fisiología , Conducta Sexual Animal/fisiología , Envejecimiento/patología , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Medios de Cultivo , Femenino , Factores de Transcripción Forkhead , Ajo , Genes de Helminto , Insulina/fisiología , Masculino , Modelos Animales , Mutación , Receptor de Insulina/genética , Receptor de Insulina/fisiología , Transducción de Señal , Recuento de Espermatozoides , Espermatozoides/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
5.
J Neurosci ; 32(26): 8778-90, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22745480

RESUMEN

Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.


Asunto(s)
Envejecimiento/patología , Sistema Nervioso/citología , Neuritas/fisiología , Neuronas/citología , Sinapsis/patología , Tacto/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Mutación/genética , Neuritas/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Curr Genomics ; 10(3): 144-53, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19881908

RESUMEN

The last decade has witnessed a revolution in our appreciation of the extensive regulatory gene expression networks modulated by small untranslated RNAs. microRNAs (miRNAs), ~22 nt RNAs that bind imperfectly to partially homologous sites on target mRNAs to regulate transcript expression, are now known to influence a broad range of biological processes germane to development, homeostatic regulation and disease. It has been proposed that miRNAs ensure biological robustness, and aging has been described as a progressive loss of system and cellular robustness, but relatively little work to date has addressed roles of miRNAs in longevity and healthspan (the period of youthful vigor and disease resistance that precedes debilitating decline in basic functions). The C. elegans model is highly suitable for testing hypotheses regarding miRNA impact on aging biology: the lifespan of the animal is approximately three weeks, there exist a wealth of genetic mutations that alter lifespan through characterized pathways, biomarkers that report strong healthspan have been defined, and many miRNA genes have been identified, expression-profiled, and knocked out. 50/114 C. elegans miRNAs change in abundance during adult life, suggesting significant potential to modulate healthspan and lifespan. Indeed, miRNA lin-4 has been elegantly shown to influence lifespan and healthspan via its lin-14 mRNA target and the insulin signaling pathway. 27 of the C. elegans age-regulated miRNAs have sequence similarity with both fly and human miRNAs. We review current understanding of a field poised to reveal major insights into potentially conserved miRNA-regulated networks that modulate aging.

7.
PLoS One ; 3(7): e2818, 2008 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-18665242

RESUMEN

microRNAs act in a prevalent and conserved post-transcriptional gene regulatory mechanism that impacts development, homeostasis and disease, yet biological functions for the vast majority of miRNAs remain unknown. Given the power of invertebrate genetics to promote rapid evaluation of miRNA function, recently expanded miRNA identifications (miRBase 10.1), and the importance of assessing potential functional redundancies within and between species, we evaluated miRNA sequence relationships by 5' end match and overall homology criteria to compile a snapshot overview of miRNA families within the C. elegans and D. melanogaster genomes that includes their identified human counterparts. This compilation expands literature documentation of both the number of families and the number of family members, within and between nematode and fly models, and highlights sequences conserved between species pairs or among nematodes, flies and humans. Themes that emerge include the substantial potential for functional redundancy of miRNA sequences within species (84/139 C. elegans miRNAs and 70/152 D. melanogaster miRNAs share significant homology with other miRNAs encoded by their respective genomes), and the striking extent to which miRNAs are conserved across species--over half (73/139) C. elegans miRNAs share sequence homology with miRNAs encoded also in both fly and human genomes. This summary analysis of mature miRNA sequence relationships provides a quickly accessible resource that should facilitate functional and evolutionary analyses of miRNAs and miRNA families.


Asunto(s)
MicroARNs , Algoritmos , Animales , Caenorhabditis elegans , Análisis por Conglomerados , Biología Computacional/métodos , Secuencia Conservada , Drosophila melanogaster , Evolución Molecular , Genoma , Genoma Humano , Humanos , MicroARNs/metabolismo , Modelos Biológicos , Familia de Multigenes , Especificidad de la Especie
8.
Aging Cell ; 5(3): 235-46, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16842496

RESUMEN

MicroRNAs (miRNAs) are small, abundant transcripts that can bind partially homologous target messages to inhibit their translation in animal cells. miRNAs have been shown to affect a broad spectrum of biological activities, including developmental fate determination, cell signaling and oncogenesis. Little is known, however, of miRNA contributions to aging. We examined the expression of 114 identified Caenorhabditis elegans miRNAs during the adult lifespan and find that 34 miRNAs exhibit changes in expression during adulthood (P

Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Longevidad/genética , MicroARNs/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Salud , Insulina/genética , Longevidad/fisiología , MicroARNs/aislamiento & purificación , Músculo Esquelético/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...