Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081289

RESUMEN

A high-current electron source for inverse photoemission spectroscopy is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6-20 eV) at the target. When scaled to the energy resolution, the electron current is an order of magnitude higher than that of previously described electron sources developed in the context of electron energy loss spectroscopy. Surprisingly, the experimentally measured energy resolution turned out to be significantly better than calculated by standard programs, which include the electron-electron repulsion in the continuum approximation. The achieved currents are also significantly higher than predicted. We attribute this "inverse Boersch-effect" to a mechanism of velocity selection in the forward direction by binary electron-electron collisions.

2.
Rev Sci Instrum ; 88(3): 033903, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28372414

RESUMEN

We introduce a high energy resolution electron source that matches the requirements for parallel readout of energy and momentum of modern hemispherical electron energy analyzers. The system is designed as an add-on device to typical photoemission chambers. Due to the multiplex gain, a complete phonon dispersion of a Cu(111) surface was measured in 7 min with 4 meV energy resolution.

3.
Chemphyschem ; 14(1): 233-6, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23081947

RESUMEN

Motivated by experimental studies of two-dimensional Ostwald ripening on Au(100) electrodes in chlorine-containing electrolytes, we have studied diffusion processes using density functional theory. We find that chlorine has a propensity to temporary form AuCl complexes, which diffuse significantly faster than gold adatoms. With and without chlorine, the lowest activation energy is found for the exchange mechanism. Chlorine furthermore reduces the activation energy for the detachment from kink sites. Kinetic Monte Carlo simulations were performed on the basis of extensive density functional theory calculations. The island-decay rate obtained from these Monte Carlo simulations, as well as the decay rate obtained from the theoretical activation energies and frequency factors when inserted into analytical solutions for Ostwald ripening, are in agreement with experimental island-decay rates in chlorine-containing electrolytes.

4.
Faraday Discuss ; (121): 27-42, discussion 97-127, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12227574

RESUMEN

Using electrochemical STM we studied monolayer high Au islands on Au(100) electrodes in sulfuric acid as a function of the electrode potential. We made use of theoretical and experimental methods recently developed for UHV experiments on metal islands. It is demonstrated that these models are likewise applicable to islands on metal electrodes in a liquid environment. From a quantitative analysis of the equilibrium island shape and of the island shape fluctuations we determined the step free energy (line tension) as a function of orientation and the kink energy, and the dependence of these quantities on the electrode potential. In a first approach to a theoretical understanding the electrostatic contributions to the line tension are considered. It is concluded that these contributions should add significantly to the observed variation with the potential. This fails however to provide essential features of the experimental result.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA