Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Geriatr Gerontol Int ; 24(1): 161-167, 2024 Jan.
Article En | MEDLINE | ID: mdl-38062994

AIM: Whether sex differences exist in hereditary progeroid syndromes remains unclear. In this study, we investigated sex differences in patients with Werner syndrome (WS), a model of human aging, using patient data at the time of diagnosis. METHODS: The presence of six cardinal signs in the diagnostic criteria was retrospectively evaluated. RESULTS: We found that the percentage of patients with all cardinal signs was higher in males than in females (54.2% vs. 21.2%). By the age of 40 years, 57.1% of male patients with WS presented with all the cardinal signs, whereas none of the female patients developed all of them. In particular, the frequency of having a high-pitched, hoarse voice, a characteristic of WS, was lower in female patients. The positive and negative predictive values for clinical diagnosis were 100% for males and females, indicating the helpfulness of diagnostic criteria regardless of sex. More female patients than male (86.7% vs. 64%) required genetic testing for their diagnosis because their clinical symptoms were insufficient, suggesting the importance of genetic testing for females even if they do not show typical symptoms of WS. Finally, the frequency of abnormal voice was lower in patients with WS harboring the c.3139-1G > C homozygous mutation. CONCLUSION: These results indicate, for the first time, that there are sex differences in the phenotypes of hereditary progeroid syndromes. The analysis of this mechanism in this human model of aging may lead to the elucidation of sex differences in the various symptoms of normal human aging. Geriatr Gerontol Int 2024; 24: 161-167.


Werner Syndrome , Humans , Male , Female , Werner Syndrome/diagnosis , Werner Syndrome/genetics , Retrospective Studies , Sex Characteristics , Werner Syndrome Helicase/genetics , Mutation
2.
Aging (Albany NY) ; 15(19): 9948-9964, 2023 10 03.
Article En | MEDLINE | ID: mdl-37793000

Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, highlighting the therapeutic potential of rapamycin for this disease.


Insulin Resistance , Insulins , Lipodystrophy , Werner Syndrome , Animals , Humans , Werner Syndrome/genetics , Adipogenesis/genetics , Caenorhabditis elegans , Cellular Senescence/genetics , Subcutaneous Fat/metabolism , Inflammation , Sirolimus , Mammals
3.
Pharmacotherapy ; 43(12): 1317-1326, 2023 Dec.
Article En | MEDLINE | ID: mdl-37772313

STUDY OBJECTIVE: The effects of the sodium-dependent glucose transporter-2 inhibitor ipragliflozin were compared with metformin in a previous study, which revealed that ipragliflozin reduced visceral fat content by 12%; however, the underlying mechanism was unclear. Therefore, this sub-analysis aimed to compare metabolomic changes associated with ipragliflozin and metformin that may contribute to their biological effects. DESIGN: A sub-analysis of a randomized controlled study. SETTING: Chiba University Hospital and ten hospitals in Japan. PATIENTS: Fifteen patients with type 2 diabetes in the ipragliflozin group and 15 patients with type 2 diabetes in the metformin group with matching characteristics, such as age, sex, baseline A1C, baseline visceral fat area, smoking status, and concomitant medication. INTERVENTIONS: Ipragliflozin 50 mg or metformin 1000 mg daily. MEASUREMENTS: The clinical data were reanalyzed, and metabolomic analysis of serum samples collected before and 24 weeks after drug administration was performed using capillary electrophoresis time-of-flight mass spectrometry. MAIN RESULTS: The reduction in the mean visceral fat area after 24 weeks of treatment was significantly larger (p = 0.002) in the ipragliflozin group (-19.8%) than in the metformin group (-2.5%), as were the subcutaneous fat area and body weight. The A1C and blood glucose levels decreased in both groups. Glutamic pyruvic oxaloacetic transaminase, γ-glutamyl transferase, uric acid, and triglyceride levels decreased in the ipragliflozin group. Low-density lipoprotein cholesterol levels decreased in the metformin group. After ipragliflozin administration, N2-phenylacetylglutamine, inosine, guanosine, and 1-methyladenosine levels increased, whereas galactosamine, glucosamine, 11-aminoundecanoic acid, morpholine, and choline levels decreased. After metformin administration, metformin, hypotaurine, methionine, methyl-2-oxovaleric acid, 3-nitrotyrosine, and cyclohexylamine levels increased, whereas citrulline, octanoic acid, indole-3-acetaldehyde, and hexanoic acid levels decreased. CONCLUSIONS: Metabolites that may affect visceral fat reduction were detected in the ipragliflozin group. Studies are required to further elucidate the underlying mechanisms.


Diabetes Mellitus, Type 2 , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Metformin/therapeutic use , Hypoglycemic Agents/adverse effects , Japan , Glycated Hemoglobin , Intra-Abdominal Fat/metabolism , Blood Glucose , Drug Therapy, Combination , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
5.
Cell Rep ; 41(6): 111610, 2022 11 08.
Article En | MEDLINE | ID: mdl-36351395

In both humans and mice, repair of acute kidney injury is worse in males than in females. Here, we provide evidence that this sexual dimorphism results from sex differences in ferroptosis, an iron-dependent, lipid-peroxidation-driven regulated cell death. Using genetic and single-cell transcriptomic approaches in mice, we report that female sex confers striking protection against ferroptosis, which was experimentally induced in proximal tubular (PT) cells by deleting glutathione peroxidase 4 (Gpx4). Single-cell transcriptomic analyses further identify the NFE2-related factor 2 (NRF2) antioxidant protective pathway as a female resilience mechanism against ferroptosis. Genetic inhibition and pharmacological activation studies show that NRF2 controls PT cell fate and plasticity by regulating ferroptosis. Importantly, pharmacological NRF2 activation protects male PT cells from ferroptosis and improves cellular plasticity as in females. Our data highlight NRF2 as a potential therapeutic target to prevent failed renal repair after acute kidney injury in both sexes by modulating cellular plasticity.


Acute Kidney Injury , Ferroptosis , Humans , Female , Male , Mice , Animals , Sex Characteristics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kidney/metabolism
6.
Curr Protoc ; 2(4): e413, 2022 Apr.
Article En | MEDLINE | ID: mdl-35384401

Ferroptosis is iron-dependent, lipid peroxidation-driven, regulated cell death that is triggered when cellular glutathione peroxidase 4 (GPX4)-mediated cellular defense is insufficient to prevent pathologic accumulation of toxic lipid peroxides. Ferroptosis is implicated in various human pathologies, including neurodegeneration, chemotherapy-resistant cancers, ischemia-reperfusion injury, and acute and chronic kidney diseases. Despite the fact that the ferroptotic process has been rigorously interrogated in multiple preclinical models, the lack of specific and readily available biomarkers to detect ferroptosis in vivo in mouse models makes it challenging to delineate its contribution to key pathologic events in vivo. Critical steps to practically evaluate ferroptosis include, but are not limited to, detecting increased cell death and pathologic accumulation of toxic lipid peroxides and testing augmentation of observed pathologic events by genetic inhibition of the glutathione-GPX4 axis or mitigation of the pathologic process by ferroptosis inhibitors. Here, we describe methods to evaluate these key features of the ferroptotic process in mice in vivo. Specifically, we describe methods to detect toxic lipid peroxides (4-hydroxynonenal) and cell death (based on terminal deoxynucleotidyl transferase dUTP nick end labeling staining) as well as a protocol to pharmacologically inhibit ferroptotic stress using liproxstatin-1. These protocols provide tools for understanding the ferroptotic process in mouse genetic or disease models. © 2022 Wiley Periodicals LLC. Basic Protocol 1: How to use liproxstatin-1 Basic Protocol 2: How to evaluate ferroptosis in mouse kidneys.


Ferroptosis , Animals , Cell Death , Iron/metabolism , Lipid Peroxidation , Lipid Peroxides , Mice
7.
Asia Pac J Clin Nutr ; 30(3): 424-435, 2021 Sep.
Article En | MEDLINE | ID: mdl-34587702

BACKGROUND AND OBJECTIVES: Red yeast rice contains monacolin K, an inhibitor of cholesterol synthesis, and gamma-aminobutyric acid, a neurotransmitter. The daily dose of red yeast rice and monacolin K in previous studies was relatively high; therefore, there were safety concerns. We aimed to examine the effects of low daily dose red yeast rice on arteriosclerosis in patients with mild dyslipidemia. METHODS AND STUDY DESIGN: Eighteen patients without known cardiovascular disease and unsatisfactory low-density lipoprotein cholesterol (3.96±0.19 mmol/L) controlled only by diet therapy were randomly allocated to receive low dose red yeast rice (200 mg/day) containing 2 mg monacolin K or diet therapy alone for 8 weeks. The primary outcome was the absolute change in low-density lipoprotein cholesterol. Secondary outcomes included total cholesterol, apolipoprotein B, and blood pressure. RESULTS: Low-density lipoprotein cholesterol decreased significantly in the red yeast rice group than in the diet therapy group (median [interquartile range]: control -0.20 [-0.62, 1.19] mmol/L vs. red yeast rice -0.96 [-1.05, -0.34] mmol/L, p=0.030). The red yeast rice group also exhibited significant decreases in total cholesterol, apolipoprotein B, and blood pressure. No severe treatment-related adverse effects on muscles, liver, or renal function were observed. CONCLUSIONS: We found that patients in the red yeast rice group exhibited significant reductions in lowdensity lipoprotein cholesterol, total cholesterol, apolipoprotein B, and blood pressure without any recognised adverse effect. This suggests that low daily dose red yeast rice could reduce cardiovascular risk in patients with dyslipidemia.


Dyslipidemias , Hypercholesterolemia , Biological Products , Blood Pressure , Cholesterol, LDL , Dietary Supplements , Dyslipidemias/drug therapy , Humans , Japan , Lovastatin
8.
Elife ; 102021 07 19.
Article En | MEDLINE | ID: mdl-34279220

Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.


Epithelial Cells/metabolism , Kidney/injuries , Kidney/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/therapy , Animals , Cell Death , Ferroptosis/genetics , Fibrosis/genetics , Gene Expression , Inflammation/genetics , Iron/metabolism , Kidney/pathology , Lipid Peroxidation , Male , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Regenerative Medicine
9.
J Diabetes Investig ; 12(2): 200-206, 2021 Feb.
Article En | MEDLINE | ID: mdl-32623839

AIMS/INTRODUCTION: Recent randomized clinical trials have suggested that sodium-glucose cotransporter 2 inhibitors might reduce cardiovascular events and heart failure, and have renal protective effects. Despite these remarkable benefits, the effects of sodium-glucose cotransporter 2 inhibitors on bone and muscle are unclear. MATERIALS AND METHODS: A subanalysis of a randomized controlled study was carried out to evaluate the effects of the sodium-glucose cotransporter 2 inhibitor, ipragliflozin, versus metformin on bone and muscle in Japanese patients with type 2 diabetes mellitus (baseline body mass index ≥22 kg/m2 and hemoglobin A1c 7-10%) who were already receiving sitagliptin. These patients were randomly administered ipragliflozin 50 mg or metformin 1,000-1,500 mg daily. The effects of these medications on the bone formation marker, bone alkali phosphatase; the bone resorption marker, tartrate-resistant acid phosphatase 5b (TRACP-5b); handgrip strength; abdominal cross-sectional muscle area; and bone density of the fourth lumbar vertebra were evaluated. RESULTS: After 24 weeks of treatment, the changes in bone density of the fourth lumbar vertebra, handgrip strength and abdominal cross-sectional muscle area were not significantly different between the two groups. However, TRACP-5b levels increased in patients treated with ipragliflozin compared with patients treated with metformin (median 11.94 vs -10.30%, P < 0.0001), showing that ipragliflozin can promote bone resorption. CONCLUSIONS: There were no adverse effects on bone or muscle when sitagliptin was used in combination with either ipragliflozin or metformin. However, ipragliflozin combination increased the levels of TRACP-5b. A long-term study is required to further understand the effects of this TRACP-5b increase caused by ipragliflozin.


Bone and Bones/drug effects , Diabetes Mellitus, Type 2/drug therapy , Glucosides/therapeutic use , Metformin/therapeutic use , Muscles/drug effects , Sitagliptin Phosphate/therapeutic use , Thiophenes/therapeutic use , Adult , Aged , Biomarkers/analysis , Blood Glucose/analysis , Bone and Bones/pathology , Cross-Sectional Studies , Drug Therapy, Combination , Female , Follow-Up Studies , Humans , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Muscles/pathology , Prognosis , Prospective Studies , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Young Adult
10.
Diabetes Ther ; 12(1): 183-196, 2021 Jan.
Article En | MEDLINE | ID: mdl-33098565

INTRODUCTION: To compare the effects of ipragliflozin, a sodium-glucose transporter 2 inhibitor, with those of metformin on visceral fat (as well as muscles and bones) in Japanese elderly patients with type 2 diabetes (T2D), we conducted a sub-analysis of a prospective, multicenter, blinded-endpoint randomized-controlled study. METHODS: In total, 103 patients with T2D (body mass index ≥ 22 kg/m2; glycated hemoglobin, 7-10%) and being treated with sitagliptin (a dipeptidyl peptidase-4 inhibitor) were included and randomized to receive ipragliflozin or metformin. The primary outcome was the change in visceral fat area measured using computed tomography 24 weeks following treatment. The secondary outcomes included changes in subcutaneous and total fat area, muscle volume, bone density measured using computed tomography, handgrip strength, bone markers, plasma glucose, insulin, homeostasis model assessment (HOMA)2-beta, HOMA2-R, glycated hemoglobin, lipid panel, uric acid, blood pressure, adiponectin, and high-sensitivity C-reactive protein. All patients aged 65-74 years were selected for sub-analysis. RESULTS: The sub-analysis included 15 and 14 patients in the ipragliflozin and metformin groups, respectively. The patients' backgrounds were well balanced. Visceral fat area reduction was greater in the ipragliflozin group than in the metformin group (- 10.58% vs. - 6.93%; P = 0.034). There were significant differences in the changes in bone absorption markers, uric acid, and total cholesterol levels between the groups. CONCLUSION: Ipragliflozin significantly reduced the visceral fat area compared with metformin when added to sitagliptin in elderly patients with T2D. Long-term and large-scale studies are required to elucidate whether ipragliflozin is suitable for elderly patients. TRIAL REGISTRATION: The study was registered at https://www.umin.ac.jp/ctr/ (UMIN-ID: UMIN 000015170).

11.
Elife ; 92020 04 17.
Article En | MEDLINE | ID: mdl-32301704

Renal macrophages represent a highly heterogeneous and specialized population of myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells (HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage populations in disease. However, little is known about how these populations change over time in normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis studies, we found that yolk-sac-derived macrophages progressively expand in number with age and become a major contributor to the renal macrophage population in older mice. This chronological shift in macrophage composition involves local cellular proliferation and recruitment from circulating progenitors and may contribute to the distinct immune responses, limited reparative capacity, and increased disease susceptibility of kidneys in the elderly population.


Older people are more likely to develop kidney disease, which increases their risk of having other conditions such as a heart attack or stroke and, in some cases, can lead to their death. Older kidneys are less able to repair themselves after an injury, which may help explain why aging contributes to kidney disease. Another possibility is that older kidneys are more susceptible to excessive inflammation. Learning more about the processes that lead to kidney inflammation in older people might lead to better ways to prevent or treat their kidney disease. Immune cells called macrophages help protect the body from injury and disease. They do this by triggering inflammation, which aides healing. Too much inflammation can be harmful though, making macrophages a prime suspect in age-related kidney harm. Studying these immune cells in the kidney and how they change over the lifespan could help scientists to better understand age-related kidney disease. Now, Ide, Yahara et al. show that one type of macrophage is better at multiplying in older kidneys. In the experiments, mice were genetically engineered to make a fluorescent red protein in one kind of macrophage. This allowed Ide, Yahara et al. to track these immune cells as the mice aged. The experiments showed that this subgroup of cells is first produced when the mice are embryos. They stay in the mouse kidneys into adulthood, and are so prolific that, over time, they eventually become the most common macrophage in older kidneys. The fact that one type of embryonically derived macrophage takes over with age may explain the increased inflammation and reduced repair capacity seen in aging kidneys. More studies will help scientists to understand how these particular cells contribute to age-related changes in susceptibility to kidney disease.


Aging/immunology , Kidney/immunology , Macrophages/physiology , Yolk Sac/cytology , Animals , CX3C Chemokine Receptor 1/analysis , Mice , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/analysis
12.
Diabetes Obes Metab ; 21(8): 1990-1995, 2019 08.
Article En | MEDLINE | ID: mdl-30993861

A prospective, multicentre, open-label, blinded-endpoint, randomized controlled study was conducted to evaluate the efficacy of treatment with ipragliflozin (sodium-dependent glucose transporter-2 inhibitor) versus metformin for visceral fat reduction and glycaemic control among Japanese patients with type 2 diabetes treated with sitagliptin, HbA1c levels of 7%-10%, and body mass index (BMI) ≥ 22 kg/m2 . Patients were randomly assigned (1:1) to receive ipragliflozin 50 mg or metformin 1000-1500 mg daily. The primary outcome was change in visceral fat area as measured by computed tomography after 24 weeks of therapy. The secondary outcomes were effects on glucose metabolism and lipid metabolism. Mean percentage reduction in visceral fat area was significantly greater in the ipragliflozin group than in the metformin group (-12.06% vs. -3.65%, P = 0.040). Ipragliflozin also significantly reduced BMI, subcutaneous fat area, waist circumference, fasting insulin, and homeostatic model assessment (HOMA)-resistance, and increased HDL-cholesterol levels. Metformin significantly reduced HbA1c and LDL-cholesterol levels and increased HOMA-beta. There were no severe adverse events. The use of ipragliflozin or metformin in combination with dipeptidyl peptidase-4 inhibitors, widely used in Japan, may have beneficial effects in ameliorating multiple cardiovascular risk factors.


Diabetes Mellitus, Type 2/drug therapy , Glucosides/administration & dosage , Hypoglycemic Agents/administration & dosage , Intra-Abdominal Fat/drug effects , Metformin/administration & dosage , Thiophenes/administration & dosage , Adult , Aged , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Drug Therapy, Combination , Female , Glycated Hemoglobin/drug effects , Humans , Japan , Male , Middle Aged , Prospective Studies , Single-Blind Method , Sitagliptin Phosphate/administration & dosage , Treatment Outcome
13.
J Am Soc Nephrol ; 29(12): 2795-2808, 2018 12.
Article En | MEDLINE | ID: mdl-30377232

BACKGROUND: The mammalian kidney develops through reciprocal inductive signals between the metanephric mesenchyme and ureteric bud. Transcription factor 21 (Tcf21) is highly expressed in the metanephric mesenchyme, including Six2-expressing cap mesenchyme and Foxd1-expressing stromal mesenchyme. Tcf21 knockout mice die in the perinatal period from severe renal hypodysplasia. In humans, Tcf21 mRNA levels are reduced in renal tissue from human fetuses with renal dysplasia. The molecular mechanisms underlying these renal defects are not yet known. METHODS: Using a variety of techniques to assess kidney development and gene expression, we compared the phenotypes of wild-type mice, mice with germline deletion of the Tcf21 gene, mice with stromal mesenchyme-specific Tcf21 deletion, and mice with cap mesenchyme-specific Tcf21 deletion. RESULTS: Germline deletion of Tcf21 leads to impaired ureteric bud branching and is accompanied by downregulated expression of Gdnf-Ret-Wnt11, a key pathway required for branching morphogenesis. Selective removal of Tcf21 from the renal stroma is also associated with attenuation of the Gdnf signaling axis and leads to a defect in ureteric bud branching, a paucity of collecting ducts, and a defect in urine concentration capacity. In contrast, deletion of Tcf21 from the cap mesenchyme leads to abnormal glomerulogenesis and massive proteinuria, but no downregulation of Gdnf-Ret-Wnt11 or obvious defect in branching. CONCLUSIONS: Our findings indicate that Tcf21 has distinct roles in the cap mesenchyme and stromal mesenchyme compartments during kidney development and suggest that Tcf21 regulates key molecular pathways required for branching morphogenesis.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Kidney/embryology , Kidney/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Down-Regulation , Female , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Immunohistochemistry , Kidney/abnormalities , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Morphogenesis/genetics , Pregnancy , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism
14.
Case Rep Radiol ; 2018: 6265175, 2018.
Article En | MEDLINE | ID: mdl-29971177

Birt-Hogg-Dubé syndrome (BHD) is a rare autosomal dominant disease characterized by skin fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces, and renal cancers. Oncocytomas are benign epithelial tumors that are also rare. Recently, there have been a few case reports of BHD with a parotid oncocytoma that appears to have a BHD phenotype. Here we document the eighth known case and describe the magnetic resonance imaging features of the parotid oncocytoma, which mimicked Warthin's tumor. Radiologists should be aware of the association between these rare disorders.

15.
Lipids Health Dis ; 17(1): 51, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29544483

BACKGROUND: Patients with type 2 diabetes are at high risk for cardiovascular disease. Although hydroxymethylglutaryl-CoA reductase inhibitors (statins) can reduce cardiovascular events, residual risk remains even after target low-density lipoprotein cholesterol (LDL-C) levels have been achieved. Lipoprotein particle size and fraction changes are thought to contribute to such risks. The purpose of this study was to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid and docosahexaenoic acid, on lipoprotein particle size, concentration, and glycemic control in Japanese patients with type 2 diabetes and hypertriglyceridemia. METHODS: This was a multicenter, prospective, open-label, single arm study. We enrolled 14 patients with type 2 diabetes and hypertriglyceridemia treated with statins and dipeptidyl peptidase-4 inhibitors with glycated hemoglobin (HbA1c) < 8.0%, LDL-C < 120 mg/dL, and fasting triglyceride ≥150 mg/dL. After a 12-week observation period, they were treated with 4 g/day n-3 PUFAs for 12 weeks. Lipoprotein particle sizes, concentrations, lipoprotein insulin resistance (LPIR) scores, lipid profiles, HbA1c, and fasting plasma glucose (FPG) were measured before and after treatment. Lipoprotein profiles were measured by nuclear magnetic resonance spectroscopy. Data were analyzed using Wilcoxon signed-rank tests. RESULTS: Concentrations of total cholesterol (P < 0.001), LDL-C (P = 0.003), and triglyceride (P < 0.001) decreased following n-3 PUFA administration. N-3 PUFAs decreased the size of very low-density lipoprotein (VLDL; P < 0.001) particles, but did not affect LDL or high-density lipoprotein (HDL) particles. The concentration of large LDL increased, whereas small LDL decreased, causing the large to small LDL ratio to increase significantly (P = 0.042). Large VLDL and chylomicron concentrations significantly decreased, as did the large to small VLDL ratio (all P < 0.001). FPG levels unchanged, whereas HbA1c levels slightly increased. LPIR scores improved significantly (P = 0.001). CONCLUSIONS: N-3 PUFAs partly improved atherogenic lipoprotein particle size and concentration, and produced less atherogenic lipoprotein subclass ratios in patients that achieved target LDL-C levels and glycemic control. These results suggest that n-3 PUFAs may reduce residual cardiovascular risk factors in statin-treated patients with type 2 diabetes and hypertriglyceridemia. TRIAL REGISTRATION: The study was registered at UMIN-ID: UMIN000013776 .


Cardiovascular Diseases/prevention & control , Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/diet therapy , Fatty Acids, Omega-3/administration & dosage , Hypertriglyceridemia/diet therapy , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/blood , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Female , Glycated Hemoglobin/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hypertriglyceridemia/blood , Hypertriglyceridemia/pathology , Japan/epidemiology , Lipoproteins/blood , Male , Middle Aged , Particle Size , Pilot Projects , Triglycerides/blood
16.
J Diabetes Investig ; 2017 Sep 12.
Article En | MEDLINE | ID: mdl-28895299

Lipodystrophy is a rare condition that is often accompanied by one or more metabolic diseases. Here, we report a case of lipoatrophic diabetes induced by juvenile dermatomyositis. Although pioglitazone was not effective for lowering blood glucose levels, our observation suggested that it improved liver function slightly. The effectiveness of metreleptin for lowering blood glucose levels could not be determined, as we administered it in a short period. Liver biopsy showed burned-out non-alcoholic steatohepatitis. The present results show that the successful treatment of lipoatrophic diabetes induced by juvenile dermatomyositis requires an early diagnosis and therapeutic intervention.

17.
Nihon Ronen Igakkai Zasshi ; 54(2): 172-178, 2017.
Article Ja | MEDLINE | ID: mdl-28592737

An 80-year-old woman was admitted to our hospital with a hypoglycemia attack. She was diagnosed with insulinoma based on her high insulin level at the time of the hypoglycemia attack and the presence of a hypervascular tumor in her pancreas. The patient refused surgical treatment and octreotide was used to prevent hypoglycemia.It is known that octreotide suppresses the secretion of insulin from the pancreas; however, insulin secretion is not always suppressed in patients with insulinoma. Moreover, there is no particular protocol for the use of octreotide in the treatment of insulinoma.We examined the effect of octreotide in preventing hypoglycemia using CGM. The injection of octreotide (50 µg) at 21: 00 prevented hypoglycemia during the night.However the patient could not perform self-injection due to the sequelae of a cerebral infarction. We therefore chose to have her eat an extra meal at 11 pm.After a while the patient became exhausted by eating meals at night. We examined the effects of octreotide LAR using CGM, and it was found to prevent hypoglycemia for 4 weeks. The patient's QOL was improved by being released from a restriction that affected her daily life.


Hypoglycemia/drug therapy , Insulinoma/complications , Octreotide/therapeutic use , Aged, 80 and over , Cerebral Infarction/etiology , Female , Humans , Hypoglycemia/complications , Quality of Life
19.
J Nephrol ; 30(4): 531-541, 2017 Aug.
Article En | MEDLINE | ID: mdl-28005239

Podocytes are essential for maintaining kidney glomerular functions. Injuries to podocyte are closely related to the pathological process of proteinuria. However, a treatment for podocyte injury has still not been established. Cilostazol (CSZ) and probucol (PBC) have been shown to possess renoprotective effects. Therefore, we evaluated these drugs in a lipopolysaccharide (LPS)-induced podocyte injury model. 7-week-old female C57BL/6J mice were fed a normal diet or a diet containing 0.3% CSZ, 0.5% PBC, or both for 10 days. Then, mice were intraperitoneally injected with 13 µg g-1 body weight LPS. Both CSZ and PBC decreased LPS-induced albuminuria and co-administration was found to be most effective. These treatments ameliorated the upregulation of monocyte chemoattractant protein 1. In cultured podocytes, CSZ suppressed LPS-induced activation of nuclear factor-kappa B (NF-κB) and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). PBC reduced LPS-induced activation of NF-κB and reactive oxygen species production. Furthermore, PBC decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase4 expression. Our findings suggest that CSZ and PBC are able to inhibit podocyte-injury through different mechanisms, indicating that a combination of these two old drugs is a good treatment option to protect podocytes from injury.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Kidney Diseases/prevention & control , Oxidative Stress/drug effects , Podocytes/drug effects , Probucol/pharmacology , Tetrazoles/pharmacology , Albuminuria/chemically induced , Albuminuria/metabolism , Albuminuria/prevention & control , Animals , Cells, Cultured , Chemokine CCL2/metabolism , Cilostazol , Cytoprotection , Disease Models, Animal , Female , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NADPH Oxidase 4/metabolism , NF-kappa B/metabolism , Phosphorylation , Podocytes/metabolism , Podocytes/pathology , Signal Transduction/drug effects
20.
Sci Rep ; 6: 25955, 2016 05 16.
Article En | MEDLINE | ID: mdl-27180624

Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.


Albuminuria/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/immunology , Lipopolysaccharides/adverse effects , Podocytes/metabolism , Semaphorins/metabolism , Albuminuria/genetics , Albuminuria/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetic Nephropathies/genetics , Disease Models, Animal , Gene Knockout Techniques , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Mice , Podocytes/cytology , Semaphorins/genetics , Signal Transduction , Streptozocin
...