Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Front Immunol ; 15: 1383281, 2024.
Article En | MEDLINE | ID: mdl-38711506

NK cell therapeutics have gained significant attention as a potential cancer treatment. Towards therapeutic use, NK cells need to be activated and expanded to attain high potency and large quantities for an effective dosage. This is typically done by ex vivo stimulation with cytokines to enhance functionality or expansion for 10-14 days to increase both their activity and quantity. Attaining a robust methodology to produce large doses of potent NK cells for an off-the-shelf product is highly desirable. Notably, past reports have shown that stimulating NK cells with IL-12, IL-15, and IL-18 endows them with memory-like properties, better anti-tumor activity, and persistence. While this approach produces NK cells with clinically favorable characteristics supported by encouraging early results for the treatment of hematological malignancies, its limited scalability, variability in initial doses, and the necessity for patient-specific production hinder its broader application. In this study, stimulation of NK cells with PM21-particles derived from K562-41BBL-mbIL21 cells was combined with memory-like induction using cytokines IL-12, IL-15, and IL-18 to produce NK cells with enhanced anti-tumor function. The use of cytokines combined with PM21-particles (cytokine and particle, CAP) significantly enhanced NK cell expansion, achieving a remarkable 8,200-fold in 14 days. Mechanistically, this significant improvement over expansion with PM21-particles alone was due to the upregulation of receptors for key stimulating ligands (4-1BBL and IL-2), resulting in a synergy that drives substantial NK cell growth, showcasing the potential for more effective therapeutic applications. The therapeutic potential of CAP-NK cells was demonstrated by the enhanced metabolic fitness, persistence, and anti-tumor function both in vitro and in vivo. Finally, CAP-NK cells were amenable to current technologies used in developing therapeutic NK cell products, including CRISPR/Cas9-based techniques to generate a triple-gene knockout or a gene knock-in. Taken together, these data demonstrate that the addition of cytokines enhanced the already effective method of ex vivo generation of therapeutic NK cells with PM21-particles, yielding a superior NK cell product for manufacturing efficiency and potential therapeutic applications.


Cytokines , Immunologic Memory , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Cytokines/metabolism , Animals , Mice , K562 Cells , Cell Survival/drug effects , Cell Proliferation/drug effects , Lymphocyte Activation
2.
Cytotherapy ; 18(5): 653-63, 2016 May.
Article En | MEDLINE | ID: mdl-27059202

BACKGROUND AIMS: Natural killer (NK) cell immunotherapy for treatment of cancer is promising, but requires methods that expand cytotoxic NK cells that persist in circulation and home to disease site. METHODS: We developed a particle-based method that is simple, effective and specifically expands cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) both ex vivo and in vivo. This method uses particles prepared from plasma membranes of K562-mb21-41BBL cells, expressing 41BBL and membrane bound interleukin-21 (PM21 particles). RESULTS: Ex vivo, PM21 particles caused specific NK-cell expansion from PBMCs from healthy donors (mean 825-fold, range 163-2216, n = 13 in 14 days) and acute myeloid leukemia patients. The PM21 particles also stimulated in vivo NK cell expansion in NSG mice. Ex vivo pre-activation of PBMCs with PM21 particles (PM21-PBMC) before intraperitoneal (i.p.) injection resulted in 66-fold higher amounts of hNK cells in peripheral blood (PB) of mice compared with unactivated PBMCs on day 12 after injection. In vivo administration of PM21 particles resulted in a dose-dependent increase of PB hNK cells in mice injected i.p. with 2.0 × 10(6) PM21-PBMCs (11% NK cells). Optimal dose of 800 µg/injection of PM21 particles (twice weekly) with low-dose interleukin 2 (1000 U/thrice weekly) resulted in 470 ± 40 hNK/µL and 95 ± 2% of total hCD45(+) cells by day 12 in PB. Furthermore, hNK cells were found in marrow, spleen, lung, liver and brain (day 16 after i.p. PM21/PBMC injection), and mice injected with PM21 particles had higher amounts. CONCLUSIONS: The extent of NK cells observed in PB, their persistence and the biodistribution would be relevant for cancer treatment.


Cell Proliferation/drug effects , Interleukin-2/pharmacology , Interleukins/pharmacology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation/immunology , Animals , Cell Line, Tumor , Cell Membrane , Female , Humans , Immunotherapy/methods , K562 Cells , Killer Cells, Natural/cytology , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred NOD , Mice, SCID
3.
Oncotarget ; 7(6): 7318-28, 2016 Feb 09.
Article En | MEDLINE | ID: mdl-26802025

Treatment of ovarian cancer, a leading cause of gynecological malignancy, has good initial efficacy with surgery and platinum/taxane-based chemotherapy, but poor long-term survival in patients. Inferior long-term prognosis is attributed to intraperitoneal spreading, relapse and ineffective alternate therapies. Adoptive cell therapy is promising for tumor remission, although logistical concerns impede widespread implementation. In this study, healthy PBMCs were used to examine the immune response in a mouse model with human ovarian cancer, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion in mice treated intraperitoneally with PBMC+Interleukin-2 (IL-2), as compared to no expansion in non-tumor-bearing mice given the same treatment. PBMC+IL-2 treated mice exhibiting NK cell expansion had complete tumor remission. To validate NK cell mediated anti-tumor response, the intratumoral presence of NK cells and their cytotoxicity was confirmed by immunohistochemistry and granzyme activity of NK cells recovered from the tumor. Collectively, this study highlights the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population, as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients.


Cytotoxicity, Immunologic/immunology , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Ovarian Neoplasms/therapy , Tissue Donors , Animals , Female , Flow Cytometry , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Biol Blood Marrow Transplant ; 21(4): 632-9, 2015 Apr.
Article En | MEDLINE | ID: mdl-25576425

Natural killer (NK) cell immunotherapy as a cancer treatment shows promise, but expanding NK cells consistently from a small fraction (∼ 5%) of peripheral blood mononuclear cells (PBMCs) to therapeutic amounts remains challenging. Most current ex vivo expansion methods use co-culture with feeder cells (FC), but their use poses challenges for wide clinical application. We developed a particle-based NK cell expansion technology that uses plasma membrane particles (PM-particles) derived from K562-mbIL15-41BBL FCs. These PM-particles induce selective expansion of NK cells from unsorted PBMCs, with NK cells increasing 250-fold (median, 35; 10 donors; range, 94 to 1492) after 14 days of culture and up to 1265-fold (n = 14; range, 280 to 4426) typically after 17 days. The rate and efficiency of NK cell expansions with PM-particles and live FCs are comparable and far better than stimulation with soluble 41BBL, IL-15, and IL-2. Furthermore, NK cells expand selectively with PM-particles to 86% (median, 35; range, 71% to 99%) of total cells after 14 days. The extent of NK cell expansion and cell content was PM-particle concentration dependent. These NK cells were highly cytotoxic against several leukemic cell lines and also against patient acute myelogenous leukemia blasts. Phenotype analysis of these PM-particle-expanded NK cells was consistent with an activated cytotoxic phenotype. This novel NK cell expansion methodology has promising clinical therapeutic implications.


Cell Proliferation , Cell-Derived Microparticles/immunology , Immunity, Cellular , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Cell Culture Techniques , Female , HL-60 Cells , Humans , K562 Cells , Male , Time Factors
5.
Arch Biochem Biophys ; 524(2): 114-22, 2012 Aug 15.
Article En | MEDLINE | ID: mdl-22609615

Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe4S4 clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²âº. Typically ATPases require Mg²âº, as is true for PabABCE1, but Mg²âº also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²âº] inhibits the PabABCE1 ATPase (K(i) of ∼1 µM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²âº inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 µM to over 1 mM with M²âº. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²âº]. These findings uncover intricate overlapping effects by both [Mg²âº] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function.


ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/metabolism , Iron , Magnesium/pharmacology , Pyrococcus abyssi/cytology , Ribosomes/metabolism , Sulfur , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chelating Agents/pharmacology , Edetic Acid/pharmacology , Egtazic Acid/pharmacology , Hydrolysis , Models, Molecular , Protein Structure, Tertiary , Pyrococcus abyssi/enzymology , Temperature
6.
J Inorg Biochem ; 112: 85-92, 2012 Jul.
Article En | MEDLINE | ID: mdl-22564272

We have used EXAFS and NRVS spectroscopies to examine the structural changes in the FeMo-cofactor active site of the α-70(Ala) variant of Azotobacter vinelandii nitrogenase on binding and reduction of propargyl alcohol (PA). The Mo K-edge near-edge and EXAFS spectra are very similar in the presence and absence of PA, suggesting PA does not bind at Mo. By contrast, Fe EXAFS spectra show a clear and reproducible change in the long Fe-Fe interaction at ~3.7 Å on PA binding with the apparent appearance of a new Fe-Fe interaction at 3.99 Å. An analogous change in the long Mo-Fe 5.1 Å interaction is not seen. The NRVS spectra exclude the possibility of large-scale structural change of the FeMo-cofactor involving breaking the µ(2) Fe-S-Fe bonds of the Fe(6)S(9)X core. The simplest chemically consistent structural change is that the bound form of PA is coordinated at Fe atoms (Fe6 or Fe7) adjacent to the Mo terminus, with a concomitant movement of the Fe away from the central atom X and along the Fe-X bond by about 0.35 Å. This study comprises the first experimental evidence of the conformational changes of the FeMo-cofactor active site on binding a substrate or product.


Alkynes/chemistry , Azotobacter vinelandii/metabolism , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Propanols/chemistry , Azotobacter vinelandii/chemistry , Azotobacter vinelandii/enzymology , Binding Sites , Catalytic Domain , Electron Spin Resonance Spectroscopy/methods , Macromolecular Substances/chemistry , Metalloproteins/chemistry , Models, Molecular , Molecular Conformation , Nitrogenase/metabolism , X-Ray Absorption Spectroscopy/methods
7.
J Am Chem Soc ; 133(43): 17329-40, 2011 Nov 02.
Article En | MEDLINE | ID: mdl-21980917

N(2) binds to the active-site metal cluster in the nitrogenase MoFe protein, the FeMo-cofactor ([7Fe-9S-Mo-homocitrate-X]; FeMo-co) only after the MoFe protein has accumulated three or four electrons/protons (E(3) or E(4) states), with the E(4) state being optimally activated. Here we study the FeMo-co (57)Fe atoms of E(4) trapped with the α-70(Val→Ile) MoFe protein variant through use of advanced ENDOR methods: 'random-hop' Davies pulsed 35 GHz ENDOR; difference triple resonance; the recently developed Pulse-Endor-SaTuration and REcovery (PESTRE) protocol for determining hyperfine-coupling signs; and Raw-DATA (RD)-PESTRE, a PESTRE variant that gives a continuous sign readout over a selected radiofrequency range. These methods have allowed experimental determination of the signed isotropic (57)Fe hyperfine couplings for five of the seven iron sites of the reductively activated E(4) FeMo-co, and given the magnitude of the coupling for a sixth. When supplemented by the use of sum-rules developed to describe electron-spin coupling in FeS proteins, these (57)Fe measurements yield both the magnitude and signs of the isotropic couplings for the complete set of seven Fe sites of FeMo-co in E(4). In light of the previous findings that FeMo-co of E(4) binds two hydrides in the form of (Fe-(µ-H(-))-Fe) fragments, and that molybdenum has not become reduced, an 'electron inventory' analysis assigns the formal redox level of FeMo-co metal ions in E(4) to that of the resting state (M(N)), with the four accumulated electrons residing on the two Fe-bound hydrides. Comparisons with earlier (57)Fe ENDOR studies and electron inventory analyses of the bio-organometallic intermediate formed during the reduction of alkynes and the CO-inhibited forms of nitrogenase (hi-CO and lo-CO) inspire the conjecture that throughout the eight-electron reduction of N(2) plus 2H(+) to two NH(3) plus H(2), the inorganic core of FeMo-co cycles through only a single redox couple connecting two formal redox levels: those associated with the resting state, M(N), and with the one-electron reduced state, M(R). We further note that this conjecture might apply to other complex FeS enzymes.


Electrons , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Azotobacter vinelandii/enzymology , Electron Spin Resonance Spectroscopy , Iron Isotopes , Models, Molecular , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Oxidation-Reduction
8.
Biochemistry ; 48(38): 9094-102, 2009 Sep 29.
Article En | MEDLINE | ID: mdl-19663502

Nitrogenase reduces dinitrogen (N2) by six electrons and six protons at an active-site metallocluster called FeMo cofactor, to yield two ammonia molecules. Insights into the mechanism of substrate reduction by nitrogenase have come from recent successes in trapping and characterizing intermediates generated during the reduction of protons as well as nitrogenous and alkyne substrates by MoFe proteins with amino acid substitutions. Here, we describe an intermediate generated at a high concentration during reduction of the natural nitrogenase substrate, N2, by wild-type MoFe protein, providing evidence that it contains N2 bound to the active-site FeMo cofactor. When MoFe protein was frozen at 77 K during steady-state turnover with N2, the S = 3/2 EPR signal (g = [4.3, 3.64, 2.00]) arising from the resting state of FeMo cofactor was observed to convert to a rhombic, S = 1/2, signal (g = [2.08, 1.99, 1.97]). The intensity of the N2-dependent EPR signal increased with increasing N2 partial pressure, reaching a maximum intensity of approximately 20% of that of the original FeMo cofactor signal at > or = 0.2 atm N2. An almost complete loss of resting FeMo cofactor signal in this sample implies that the remainder of the enzyme has been reduced to an EPR-silent intermediate state. The N2-dependent EPR signal intensity also varied with the ratio of Fe protein to MoFe protein (electron flux through nitrogenase), with the maximum signal intensity observed with a ratio of 2:1 (1:1 Fe protein:FeMo cofactor) or higher. The pH optimum for the signal was 7.1. The N2-dependent EPR signal intensity exhibited a linear dependence on the square root of the EPR microwave power in contrast to the nonlinear response of signal intensity observed for hydrazine-, diazene-, and methyldiazene-trapped states. 15N ENDOR spectroscopic analysis of MoFe protein captured during turnover with 15N2 revealed a 15N nuclear spin coupled to the FeMo cofactor with a hyperfine tensor A = [0.9, 1.4, 0.45] MHz establishing that an N2-derived species was trapped on the FeMo cofactor. The observation of a single type of 15N-coupled nucleus from the field dependence, along with the absence of an associated exchangeable 1H ENDOR signal, is consistent with an N2 molecule bound end-on to the FeMo cofactor.


Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Azotobacter vinelandii/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Electron Spin Resonance Spectroscopy , Electron Transport , Enzyme Stability , Freezing , Hydrogen-Ion Concentration , Oxidation-Reduction
9.
J Am Chem Soc ; 130(17): 5673-80, 2008 Apr 30.
Article En | MEDLINE | ID: mdl-18386899

NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter vinelandii. The spectra have been interpreted in part by comparison with data for the completed FeMo-co attached to the NafY carrier protein: the NafY:FeMo-co complex. EXAFS analysis of the NifX:NifB-co complex yields an average Fe-S distance of 2.26 A and average Fe-Fe distances of 2.66 and 3.74 A. Search profile analyses reveal the presence of a single Fe-X (X = C, N, or O) interaction at 2.04 A, compared to a 2.00 A Fe-X interaction found in the NafY:FeMo-co EXAFS. This suggests that the interstitial light atom (X) proposed to be present in FeMo-co has already inserted at the NifB-co stage of biosynthesis. The NRVS exhibits strong bands from Fe-S stretching modes peaking around 270, 315, 385, and 408 cm(-1). Additional intensity at approximately 185-200 cm(-1) is interpreted as a set of cluster "breathing" modes similar to those seen for the FeMo-cofactor. The strength and location of these modes also suggest that the FeMo-co interstitial light atom seen in the crystal structure is already in place in NifB-co. Both the EXAFS and NRVS data for NifX:NifB-co are best simulated using a Fe 6S 9X trigonal prism structure analogous to the 6Fe core of FeMo-co, although a 7Fe structure made by capping one trigonal 3S terminus with Fe cannot be ruled out. The results are consistent with the conclusion that the interstitial light atom is already present at an early stage in FeMo-co biosynthesis prior to the incorporation of Mo and R-homocitrate.


Iron Compounds/chemistry , Molybdoferredoxin/chemistry , X-Rays , Absorption , Carbon/chemistry , Electron Spin Resonance Spectroscopy/methods , Iron Compounds/metabolism , Molecular Structure , Molybdoferredoxin/metabolism , Nitrogen/chemistry , Oxygen/chemistry
10.
Biochemistry ; 47(15): 4439-51, 2008 Apr 15.
Article En | MEDLINE | ID: mdl-18355040

ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.


Agrobacterium tumefaciens/enzymology , Bacterial Proteins/chemistry , Glucose-1-Phosphate Adenylyltransferase/chemistry , Models, Molecular , Allosteric Site , Amino Acid Sequence , Binding Sites , Catalysis , Crystallography, X-Ray , Fructosephosphates/chemistry , Kinetics , Molecular Sequence Data , Sequence Alignment , Solanum tuberosum/enzymology
11.
Proc Natl Acad Sci U S A ; 104(45): 17626-31, 2007 Nov 06.
Article En | MEDLINE | ID: mdl-17978192

Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron-molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe(2+), S(2-), MoO4(2-), and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe(2+), S(2-), MoO4(2-), R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed.


Molybdoferredoxin/chemical synthesis , Nitrogen Fixation , Nitrogenase/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/metabolism , Indicators and Reagents , Iron , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Molybdenum , Sulfur , Tricarboxylic Acids
13.
Mol Microbiol ; 63(1): 177-92, 2007 Jan.
Article En | MEDLINE | ID: mdl-17163967

The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis.


Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Iron Compounds/metabolism , Molybdoferredoxin/biosynthesis , Nitrogen Fixation/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Biosynthetic Pathways , Genes, Bacterial , Molybdoferredoxin/chemistry
14.
J Biol Chem ; 281(48): 36701-9, 2006 Dec 01.
Article En | MEDLINE | ID: mdl-17012743

The NifEN protein complex serves as a molecular scaffold where some of the steps for the assembly of the iron-molybdenum cofactor (FeMo-co) of nitrogenase take place. A His-tagged version of the NifEN complex has been previously purified and shown to carry two identical [4Fe-4S] clusters of unknown function and a [Fe-S]-containing FeMo-co precursor. We have improved the purification of the his-NifEN protein from a DeltanifHDK strain of Azotobacter vinelandii and have found that the amounts of iron and molybdenum within NifEN were significantly higher than those reported previously. In an in vitro FeMo-co synthesis system with purified components, the NifEN protein served as a source of both molybdenum and a [Fe-S]-containing FeMo-co precursor, showing significant FeMo-co synthesis activity in the absence of externally added molybdate. Thus, the NifEN scaffold protein, purified from DeltanifHDK background, contained the Nif-Bco-derived Fe-S cluster and molybdenum, although these FeMo-co constituents were present at different levels within the protein complex.


Cobalt/chemistry , Iron/chemistry , Molybdenum/chemistry , Molybdoferredoxin/chemistry , Azotobacter vinelandii/metabolism , Buffers , Carrier Proteins/chemistry , Chromatography, Affinity , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy , Metals/chemistry , Nitrogenase/chemistry , Protein Binding , Zinc/chemistry
15.
J Am Chem Soc ; 127(43): 14960-1, 2005 Nov 02.
Article En | MEDLINE | ID: mdl-16248599

A high population intermediate has been trapped on the nitrogenase active site FeMo cofactor during reduction of N2. In addition, intermediates have been trapped during reduction of CH3-N=NH by the alpha-195Gln variant and during reduction of H2N-NH2 by the alpha-70Ala/alpha-195Gln variant. Each of these trapped states shows an EPR signal arising from an S = 1/2 state of the FeMo cofactor. 15N ENDOR shows that each intermediate has a nitrogenous species bound to the FeMo cofactor, with a single type of N seen for each bound intermediate. The g tensors are unique to each intermediate, g(e) = [2.084, 1.993, 1.969], g(m) = [2.083, 2.021, 1.993], g(l) = [2.082, 2.015, 1.987], as are the 15N hyperfine couplings at g1, which suggests that three distinct stages of NN reduction may have been trapped. The 1H ENDOR spectra show that the N2 intermediate is at a distinct and earlier stage of reduction from the other two, so at least two stages of NN reduction have been trapped. Some possible structures of the hydrazine intermediate are presented.


Amides/chemistry , Amines/chemistry , Molybdoferredoxin/metabolism , Nitrogen/chemistry , Nitrogenase/metabolism , Binding Sites , Catalytic Domain , Electron Spin Resonance Spectroscopy , Molybdoferredoxin/chemistry , Oxidation-Reduction
16.
Biochemistry ; 44(22): 8030-7, 2005 Jun 07.
Article En | MEDLINE | ID: mdl-15924422

A major challenge in understanding the mechanism of nitrogenase, the enzyme responsible for the biological fixation of N(2) to two ammonias, is to trap a nitrogenous substrate at the enzyme active site in a state that is amenable to further characterization. In the present work, a strategy is described that results in the trapping of the substrate hydrazine (H(2)N-NH(2)) as an adduct bound to the active site metal cluster of nitrogenase, and this bound adduct is characterized by EPR and ENDOR spectroscopies. Earlier work has been interpreted to indicate that nitrogenous (e.g., N(2) and hydrazine) as well as alkyne (e.g., acetylene) substrates can bind at a common FeS face of the FeMo-cofactor composed of Fe atoms 2, 3, 6, and 7. Substitution of alpha-70(Val) that resides over this FeS face by the smaller amino acid alanine was also previously shown to improve the affinity and reduction rate for hydrazine. We now show that when alpha-195(His), a putative proton donor near the active site, is substituted by glutamine in combination with substitution of alpha-70(Val) by alanine, and the resulting doubly substituted MoFe protein (alpha-70(Ala)/alpha-195(Gln)) is turned over with hydrazine as substrate, the FeMo-cofactor can be freeze-trapped in a S = (1)/(2) state in high yield ( approximately 70%). The presumed hydrazine-FeMo-cofactor adduct displays a rhombic EPR signal with g = [2.09, 2.01, 1.93]. The optimal pH for the population of this state was found to be 7.4. The EPR signal showed a Curie law temperature dependence similar to the resting state EPR signal. Mims pulsed ENDOR spectroscopy at 35 GHz using (15)N-labeled hydrazine reveals that the trapped intermediate incorporates a hydrazine-derived species bound to the FeMo-cofactor; in spectra taken at g(1) this species gives a single observed (15)N signal, A(g(1)) = 1.5 MHz.


Hydrazines/chemistry , Nitrogenase/chemistry , Nitrogenase/metabolism , Azotobacter vinelandii/enzymology , Binding Sites , Electron Spin Resonance Spectroscopy/methods , Enzyme Inhibitors/chemistry , Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Nitrogenase/antagonists & inhibitors , Oxidation-Reduction , Protons , Substrate Specificity
17.
J Am Chem Soc ; 127(17): 6231-41, 2005 May 04.
Article En | MEDLINE | ID: mdl-15853328

We here show that the iron-molybdenum (FeMo)-cofactor of the nitrogenase alpha-70(Ile) molybdenum-iron (MoFe) protein variant accumulates a novel S = (1)/(2) state that can be trapped during the reduction of protons to H(2). (1,2)H-ENDOR measurements disclose the presence of two protons/hydrides (H(+/)(-)) whose hyperfine tensors have been determined from two-dimensional field-frequency (1)H ENDOR plots. The two H(+/)(-) have large isotropic hyperfine couplings, A(iso)( )() approximately 23 MHz, which shows they are bound to the cofactor. The favored analysis for these plots indicates that the two H(+/)(-) have the same principal values, which indicates that they are chemically equivalent. The tensors are further related to each other by a permutation of the tensor components, which indicates an underlying symmetry of binding relative to the cofactor. At present, no model for the structure of the iron-molybdenum (FeMo)-cofactor in the S = (1)/(2) state trapped during the reduction of H(+) can be shown unequivocally to satisfy all of the constraints generated by the ENDOR analysis. The data disfavors any model that involves protonation of sulfides, and thus suggests that the intermediate instead contains two chemically equivalent bound hydrides; it appears unlikely that these are terminal monohydrides.


Hydrogen/chemistry , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Binding Sites , Electron Spin Resonance Spectroscopy , Hydrogen/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Oxidation-Reduction , Protons , Sulfides/chemistry
18.
Acc Chem Res ; 38(3): 208-14, 2005 Mar.
Article En | MEDLINE | ID: mdl-15766240

The chemical mechanism for biological cleavage of the N(2) triple bond at ambient pressure and temperature has been the subject of intense study for many years. The site of substrate activation and reduction has been localized to a complex cofactor, called FeMo cofactor, yet until now the complexity of the system has denied information concerning exactly where and how substrates interact with the metal-sulfur framework of the active site. In this Account, we describe a combined genetic, biophysical, and biochemical approach that was used to provide direct and detailed information concerning where alternative alkyne substrates interact with FeMo cofactor during catalysis. The relevance and limitations of this work with respect to N(2) binding and reduction also are discussed.


Nitrogen Fixation , Nitrogen/chemistry , Nitrogenase/chemistry , Nitrogenase/metabolism , Alkynes/chemistry , Binding Sites , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Structure , Nitrogenase/genetics , Propanols/chemistry
19.
Article En | MEDLINE | ID: mdl-16511013

ADP-glucose pyrophosphorylase catalyzes the conversion of glucose-1-phosphate and ATP to ADP-glucose and pyrophosphate, a key regulated step in both bacterial glycogen and plant starch biosynthesis. Crystals of ADP-glucose pyrophosphorylase from Agrobacterium tumefaciens (420 amino acids, 47 kDa) have been obtained by the sitting-drop vapor-diffusion method using lithium sulfate as a precipitant. A complete native X-ray diffraction data set was collected to a resolution of 2.0 A from a single crystal at 100 K. The crystals belong to space group I222, with unit-cell parameters a = 92.03, b = 141.251, c = 423.64 A. To solve the phase problem, a complete anomalous data set was collected from a selenomethionyl derivative. These crystals display one-fifth of the unit-cell volume of the wild-type crystals, with unit-cell parameters a = 85.38, b = 93.79, c = 140.29 A and space group I222.


Agrobacterium tumefaciens/enzymology , Glucose-1-Phosphate Adenylyltransferase/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Glucose-1-Phosphate Adenylyltransferase/isolation & purification , Protein Conformation , X-Ray Diffraction
20.
J Biol Chem ; 279(51): 53621-4, 2004 Dec 17.
Article En | MEDLINE | ID: mdl-15465817

Nitrogenase catalyzes biological dinitrogen fixation, the reduction of N(2) to 2NH(3). Recently, the binding site for a non-physiological alkyne substrate (propargyl alcohol, HC triple bond C-CH(2)OH) was localized to a specific Fe-S face of the FeMo-cofactor approached by the MoFe protein amino acid alpha-70(Val). Here we provide evidence to indicate that the smaller alkyne substrate acetylene (HC triple bond CH), the physiological substrate dinitrogen, and its semi-reduced form hydrazine (H(2)N-NH(2)) interact with the same Fe-S face of the FeMo-cofactor. Hydrazine is a relatively poor substrate for the wild-type (alpha-70(Val)) MoFe protein. Substitution of the alpha-70(Val) residue by an amino acid having a smaller side chain (alanine) dramatically enhanced hydrazine reduction activity. Conversely, substitution of alpha-70(Val) by an amino acid having a larger side chain (isoleucine) significantly lowered the capacity of the MoFe protein to reduce dinitrogen, hydrazine, or acetylene.


Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Acetylene/chemistry , Alanine/chemistry , Azotobacter vinelandii/metabolism , Binding Sites , Catalysis , Dose-Response Relationship, Drug , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrogen-Ion Concentration , Iron/chemistry , Isoleucine/chemistry , Kinetics , Macromolecular Substances , Models, Chemical , Models, Molecular , Nitrogen/chemistry , Oxidation-Reduction , Protein Binding , Substrate Specificity
...