Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 11(13): 7442-7449, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423253

RESUMEN

M-doped WO3 (M = Sn or In) films were prepared from aqueous coating solutions via evaporation-driven deposition during low-speed dip coating. Sn- and In-doping were easily achieved by controlling the chemical composition of simple coating solutions containing only metal salts and water. The crystallinity of the WO3, Sn-doped WO3, and In-doped WO3 films varied with heating temperature, where amorphous and crystalline films were obtained by heating at 200 and 500 °C, respectively. All the amorphous and crystalline films showed an electrochromic response, but good photoelectrochemical stability was observed only for the crystalline samples heated at 500 °C. The crystalline In-WO3 films exhibited a faster electrochromic color change than the WO3 or Sn-WO3 films, and good cycle stability for the electrochromic response in the visible wavelength region.

2.
Langmuir ; 32(13): 3116-21, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27010979

RESUMEN

We prepared tungsten trioxide (WO3) photoelectrode films from organic-additive-free aqueous solutions by a low-speed dip-coating technique. The evaporation-driven deposition of the solutes occurred at the meniscus during low-speed dip coating, resulting in the formation of coating layer on the substrate. Homogeneous WO3 precursor films were obtained from (NH4)10W12O41·5H2O aqueous solutions and found to be crystallized to monoclinic WO3 films by the heat treatment at 400-700 °C. All the films showed a photoanodic response irrespective of the heat treatment temperature, where a good photoelectrochemical stability was observed for those heated over 500 °C. The highest photoanodic performance was observed for the WO3 film heated at 700 °C, where the IPCE (incident photon-to-current efficiency) was 36.2% and 4.6% at 300 and 400 nm, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA