Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 212(Pt A): 113227, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35378120

RESUMEN

The aggressively extractive advanced technology industry thrives on intensive use of non-renewable resources and hyper-consumeristic culture. The environmental impact of its exponential growth means extreme mining, hazardous labour practices including child labour, and exposure burden to inorganic and organic hazardous chemicals for the environment and current and future human generations. Globally, processes such as in-country reduce, reuse and recycle have so far received less attention than outer-circle strategies like the uncontrolled dumping of e-waste in countries that are unprotected by regulatory frameworks. Here, in the absence of infrastructures for sound hazardous e-waste management, the crude recycling, open burning and dumping into landfills of e-waste severely expose people, animal and the environment. Along with economic, political, social, and cultural solutions to the e-waste global problem, the scientific approach based on risk analysis encompassing risk assessment, risk management and risk communication can foster a technical support to resist transgenerational e-waste exposure and health inequalities. This paper presents the latest public health strategies based on the use of integrated human and animal biomonitoring and appropriate biomarkers to assess and manage the risk of e-waste embracing the One Health approach. Advantages and challenges of integrated biomonitoring are described, along with ad-hoc biomarkers of exposure, effect and susceptibility with special focus on metals and metalloids. Indeed, the safe and sustainable management of novel technologies will benefit of the integration and coordination of human and animal biomonitoring.


Asunto(s)
Residuos Electrónicos , Salud Única , Administración de Residuos , Humanos , Reciclaje , Instalaciones de Eliminación de Residuos
2.
Sustainability ; 14(18)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38883266

RESUMEN

Although there is rising global concern over the environmental, ecological, and human health risks associated with the discharge of leachates from e-waste dumpsites into the aquatic ecosystems, little is known in this research area. Thus, for this study, we first defined the chemistry of the test leachate, followed by assessment of the leachate on the development of a model aquatic organism (Fundulus heteroclitus) used extensively as a bioassay organism in pollution studies. Chemical analyses revealed that levels of phosphate (20.03 mg/L), cadmium (Cd) (0.4 mg/L), lead (Pb) (0.2 mg/L), and chromium (Cr) (0.4 mg/L) were higher than the 2009 US EPA and the 2009 National Environmental Standards and Regulations Enforcement Agency (NESREA) permissible limits. Polycyclic aromatic hydrocarbon (PAH) burdens were dominated mainly by the high molecular weight congeners, specifically the ∑4rings (73 µg/L). Total polychlorinated biphenyls (PCB) levels ranged from 0.00 to 0.40 µg/L with the ∑deca PCBs reaching the highest concentration. For the biological studies, F. heteroclitus embryos (48-h post-fertilization) were divided randomly into groups and exposed to one of six e-waste leachate concentrations (10, 1, 0.1, 0.01, 0.001, 0.0001%). Significant differences (p ≤ 0.05) between treated and control groups were observed in standard and total length, and head size. Further analysis using Duncan's post-hoc test of multiple comparison also revealed specific differences within and between specific treatment groups. We conclude that e-waste leachate arising from indiscriminate dumping into aquatic ecosystems in Nigeria contains mixtures of toxic constituents that can threaten ecosystem and public health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...