Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 38(6): 103, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35501420

RESUMEN

Infectious bovine keratoconjunctivitis (IBK) is an ocular disease affecting bovine herds worldwide, and it causes significant economic loss. The etiologic agent of IBK is considered to be Moraxella bovis, but M. ovis and M. bovoculi are frequently recovered of animals presenting clinical signs of IBK. The therapeutic measures available for its control have limited efficacy. Antimicrobial photodynamic therapy (aPDT) using porphyrins as photosensitizing molecules is an alternative method that can be used to reduce microbial growth. We evaluated the antibacterial activity of aPDT using two water-soluble tetra-cationic porphyrins (H2TMeP and ZnTMeP) against 22 clinical isolates and standard strains of Moraxella spp. in vitro and in an ex vivo model. For the in vitro assay, 4.0 µM of porphyrin was incubated with approximately 1.0 × 104 CFU/mL of each Moraxella sp. isolate and exposed to artificial light for 0, 2.5, 5, and 7.5 min. Next, 50 µL of this solution was plated and incubated for 24 h until CFU measurement. For the ex vivo assay, corneas excised from the eyeballs of slaughtered cattle were irrigated with Moraxella spp. culture, followed by the addition of zinc(II) porphyrin ZnTMeP (4.0 µM). The corneal samples were irradiated for 0, 7.5, and 30 min, followed by swab collection, plating, and CFU count. The results demonstrated the in vitro inactivation of the strains and clinical isolates of Moraxella spp. after 2.5 min of irradiation using ZnTMeP, reaching complete inactivation until 7.5 min. In the ex vivo experiment, the use of ZnTMeP resulted in the most significant reduction in bacterial concentration after 30 min of irradiation. These results encourage future in vivo experiments to investigate the role of metalloporphyrin ZnTMeP in the inactivation of Moraxella spp. isolates causing IBK.


Asunto(s)
Antiinfecciosos , Enfermedades de los Bovinos , Queratoconjuntivitis Infecciosa , Queratoconjuntivitis , Infecciones por Moraxellaceae , Fotoquimioterapia , Porfirinas , Animales , Antibacterianos/farmacología , Bovinos , Enfermedades de los Bovinos/microbiología , Queratoconjuntivitis Infecciosa/tratamiento farmacológico , Queratoconjuntivitis Infecciosa/microbiología , Moraxella , Infecciones por Moraxellaceae/tratamiento farmacológico , Infecciones por Moraxellaceae/microbiología , Infecciones por Moraxellaceae/veterinaria , Porfirinas/farmacología , Ovinos
2.
J Photochem Photobiol B ; 224: 112323, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34598019

RESUMEN

This work evaluated the photosensitizing activity of isomeric tetra-cationic porphyrins with peripheral [Pt(bpy)Cl]+ to control the larval population of Aedes aegypti by photodynamic action. The photolarvicidal activity of the tetra-platinated porphyrins at meta and para position (3-PtTPyP and 4-PtTPyP) was evaluated under blue (450 nm), green (525 nm), and red (625 nm) light illumination at 55.0 J cm-2. The meta isomer presented an efficient photolarvicidal activity even at a low concentration (1.2 ppm) in the presence of light, while the para counterpart was inactive regardless of the concentration and illumination. The different responses were related to the improved optical features and higher water solubility of 3-PtTPyP compared to 4-PtTPyP. Additionally, the potential environmental toxicity of 3-PtTPyP was tested in a plant model (Allium cepa test), with no toxicity detected for all used concentrations (1.2 to 12 ppm). Hence, this work reveals that 3-PtTPyP has a great potential to be employed to photodynamically control the insect vector population in an environmentally safe way.


Asunto(s)
Aedes/crecimiento & desarrollo , Complejos de Coordinación/farmacología , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Fármacos Fotosensibilizantes/farmacología , Compuestos de Platino/química , Porfirinas/química , Animales , Complejos de Coordinación/química , Isomerismo
3.
Photodiagnosis Photodyn Ther ; 32: 101982, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32890692

RESUMEN

Antimicrobial-resistant bacteria have been frequently isolated from canine otitis. Photodynamic therapy using porphyrins as photosensitizing molecules is an alternative therapy against microorganisms in localized infections. Therefore, we evaluated the antibacterial activity of two tetra-cationic porphyrins (H2TMeP and ZnTMeP) against gram-positive and -negative bacteria isolated from canine otitis, as well as its putative action mechanism. For this, two gram-positive and two gram-negative bacteria frequently detected in cases of canine otitis (coagulase-positive and -negative staphylococci [CPS and CNS], Pseudomonas aeruginosa, and Proteus mirabilis) were used in antibacterial activity assays. Each porphyrin at a non-cytotoxic dose was incubated with a fixed concentration of each bacterium and exposed to white-light irradiation for 0, 30, 60, and 90 min. Clinical isolates of CPS and CNS were photo-inactivated after 30 min of white-light exposure by both porphyrins (p < 0.05). Gram-negative bacteria were also photo-inactivated after 30 min (p < 0.05), reaching complete inactivation after 60 and 90 min of white-light irradiation by H2TMeP and ZnTMeP, respectively. Antibacterial assays using standard bacterial strains (ATCCs) demonstrated similar results to those obtained with clinical isolates, except for P. aeruginosa, which was completely inactivated by ZnTMeP at 60 min, and the absence of a significant reduction in P. mirabilis concentration when irradiated for 30 min. Similar assays were conducted using reactive oxygen species scavengers showing that the putative mechanism for bacterial inactivation is through the production of singlet oxygen species. These results indicated that H2TMeP and ZnTMeP tetra-cationic porphyrins were effective against bacteria isolated from canine otitis.


Asunto(s)
Otitis , Fotoquimioterapia , Porfirinas , Animales , Antibacterianos/farmacología , Perros , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118389, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32417643

RESUMEN

The role of meso-substituents on the spectral features of free-base porphyrins is explored. Meso-tetra(4-pyridyl)porphyrin is compared with meso-tetra(2-thienyl)porphyrin and meso-tetra(pentafluorophenyl)porphyrin. Our results indicate that some of the asymmetric Q-bands in the free-base porphyrin tend to become symmetric relative to the adopted meso-substituent. The results show that the outlying perturbations lead the free-base quasi-degenerated Qx1, Qx2, Qy1, and Qy2 bands to be closer in energy. Combined, absorption, fluorescence and Raman spectroscopies endorse our conclusions showing that both the frequencies and the Huang-Rhys factors associated with every vibronic progression are noticeably affected by the investigated meso-substituents. Our results confirm that the B-band is also multi-featured in agreement with what is found for the Q-bands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA