Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Anal Sci ; 32(12): 1339-1345, 2016.
Article En | MEDLINE | ID: mdl-27941265

Solid-state NMR observations of low-gamma half-integer quadrupolar nuclei, 35Cl and 37Cl, were demonstrated using a 24 T hybrid magnet (1H resonance frequency of 1.02 GHz) comprised of the high-temperature (HTS) and low-temperature (LTS) superconductors, and compared with results using a 14.1 T standard NMR magnet. While at 24 T the linewidth is 1.7 times narrower than that at 14.1 T, the gain in the sensitivity is 7.0 times because of enhanced polarization, reduced linewidth, and the use of larger rotor. A simple theoretical model was used to rationalize the sensitivity enhancements. The ratio of 35Cl and 37Cl quadrupolar couplings agrees well with the ratio of quadrupolar moments, and no isotope-dependent chemical shift has been observed. In addition, the 3QMAS spectrum of 35Cl is shown to demonstrate the high sensitivity rendered by the 24 T spectrometer.

2.
J Magn Reson ; 261: 1-5, 2015 Dec.
Article En | MEDLINE | ID: mdl-26524647

This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.


Magnetic Resonance Spectroscopy/methods , Protons , Electromagnetic Fields , Histidine/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Tyrosine/chemistry
3.
J Magn Reson ; 256: 30-33, 2015 Jul.
Article En | MEDLINE | ID: mdl-25978708

We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra.

...