Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
J Oral Biosci ; 66(1): 49-60, 2024 Mar.
Article En | MEDLINE | ID: mdl-38048848

OBJECTIVES: Teriparatide [TPTD; human parathyroid hormone (hPTH1-34)] is an anti-osteoporotic drug with bone anabolic effects. Clinical and preclinical studies have indicated that TPTD has value in oral and maxillofacial bone therapies, including jawbone regeneration, periodontal tissue repair, and the treatment of medication-related osteonecrosis of the jaw. However, it is unclear whether the craniofacial bones respond to TPTD similarly to the axial and appendicular bones. Recent studies showed that TPTD acts on both osteocytes and osteoblasts. This study aimed to characterize distinct craniofacial bone sites, with a focus on morphometric changes in osteocytic lacunae in ovariectomized rats receiving TPTD. METHODS: Conventional bone histomorphometric analyses of mandibular and parietal bone sections were conducted. High-resolution confocal imaging-based three-dimensional fluorescence morphometric analyses of osteocytic lacunae in distinct mandibular and parietal bone sites were conducted. RESULTS: We observed dynamic changes in the morphometric characteristics of osteocytic lacunae specifically in alveolar and other mandibular bone sites upon TPTD administration. CONCLUSIONS: These findings suggest that osteocytes in mandibular bone (specifically, alveolar bone) have unique functional characteristics of osteocytic perilacunar remodeling.


Osteocytes , Teriparatide , Humans , Rats , Animals , Teriparatide/pharmacology , Osteocytes/physiology , Fluorescence , Bone Remodeling , Mandible/diagnostic imaging
2.
Aging Cell ; 23(2): e14050, 2024 Feb.
Article En | MEDLINE | ID: mdl-38098255

Thrombosis is the major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the pathology of vascular endothelial cells (ECs) has received much attention. Although there is evidence of the infection of ECs in human autopsy tissues, their detailed pathophysiology remains unclear due to the lack of animal model to study it. We used a mouse-adapted SARS-CoV-2 virus strain in young and mid-aged mice. Only mid-aged mice developed fatal pneumonia with thrombosis. Pulmonary ECs were isolated from these infected mice and RNA-Seq was performed. The pulmonary EC transcriptome revealed that significantly higher levels of viral genes were detected in ECs from mid-aged mice with upregulation of viral response genes such as DDX58 and IRF7. In addition, the thrombogenesis-related genes encoding PLAT, PF4, F3 PAI-1, and P-selectin were upregulated. In addition, the inflammation-related molecules such as CXCL2 and CXCL10 were upregulated in the mid-aged ECs upon viral infection. Our mouse model demonstrated that SARS-CoV-2 virus entry into aged vascular ECs upregulated thrombogenesis and inflammation-related genes and led to fatal pneumonia with thrombosis. Current results of EC transcriptome showed that EC uptake virus and become thrombogenic by activating neutrophils and platelets in the aged mice, suggesting age-associated EC response as a novel finding in human severe COVID-19.


COVID-19 , Pneumonia , Thrombosis , Humans , Mice , Animals , Middle Aged , Aged , SARS-CoV-2 , Endothelial Cells , Lung/pathology , Inflammation/pathology , Pneumonia/pathology , Thrombosis/pathology
3.
Sci Rep ; 13(1): 22028, 2023 12 12.
Article En | MEDLINE | ID: mdl-38086873

Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown. As the early stage of osteocyte network formation occurs on the bone surface, we observed a newly formed trabecular bone surface by orthogonal focused ion beam-scanning electron microscopy. The embedding late osteoblast processes tended to avoid bundled collagen fibrils and elongate into sparse collagen fibrils. Then, we examined whether the inhibition of bundling of collagen fibrils using a potent lysyl oxidase inhibitor, ß-aminopropionitrile (BAPN) changed the cellular network of the chick calvaria. The osteocyte shape of the control group was spindle-shape, while that of the BAPN group was sphere-shaped. In addition, the osteocyte processes of the control group were elongated vertically to the long axis of the cell body, whereas the osteocyte processes of the BAPN group were elongated radially. Therefore, it was suggested that the bundling of collagen fibrils influences normal osteocyte network formation during bone modeling.


Aminopropionitrile , Osteocytes , Osteocytes/metabolism , Extracellular Matrix/metabolism , Skull/metabolism , Collagen/metabolism
4.
Sci Rep ; 13(1): 20813, 2023 11 27.
Article En | MEDLINE | ID: mdl-38012303

Osteoclasts uniquely resorb calcified bone matrices. To exert their function, mature osteoclasts maintain the cellular polarity and directional vesicle trafficking to and from the resorbing bone surface. However, the regulatory mechanisms and pathophysiological relevance of these processes remain largely unexplored. Bone histomorphometric analyses in Ccr5-deficient mice showed abnormalities in the morphology and functional phenotype of their osteoclasts, compared to wild type mice. We observed disorganized clustering of nuclei, as well as centrosomes that organize the microtubule network, which was concomitant with impaired cathepsin K secretion in cultured Ccr5-deficient osteoclasts. Intriguingly, forced expression of constitutively active Rho or Rac restored these cytoskeletal phenotypes with recovery of cathepsin K secretion. Furthermore, a gene-disease enrichment analysis identified that PLEKHM1, a responsible gene for osteopetrosis, which regulates lysosomal trafficking in osteoclasts, was regulated by CCR5. These experimental results highlighted that CCR5-mediated signaling served as an intracellular organizer for centrosome clustering in osteoclasts, which was involved in the pathophysiology of bone metabolism.


Bone Resorption , Osteoclasts , Receptors, CCR5 , Animals , Mice , Bone and Bones/metabolism , Bone Matrix/metabolism , Bone Resorption/genetics , Bone Resorption/metabolism , Cathepsin K/metabolism , Centrosome/metabolism , Osteoclasts/metabolism , Receptors, CCR5/metabolism
5.
Bone Rep ; 19: 101720, 2023 Dec.
Article En | MEDLINE | ID: mdl-37915737

Larger animal models with a well-developed Haversian system, as observed in humans, are ideal to analyze cortical bone remodeling in pharmacological studies of anti-osteoporosis drugs, although they have some limitations in controlling individual variability in size, weight, age, and number. This study aimed to morphometrically analyze cortical bone remodeling focusing on Haversian canals in dogs using four regimens of TPTD with daily and weekly administrations at lower and higher weekly doses (4.9 µg/kg/week and 19.8 µg/kg/week, respectively) for 9 months. A micro-computed tomography-based analysis showed no significant differences among regimen groups. By establishing artificial intelligence (AI)-driven morphometric analyses and geographical information system (GIS)-based spatial mapping of Haversian canals that does not require confocal microscopy but is possible with more commonly used wide field microscopes, we successfully observed significant morphometric distinctions among regimens applied even in dogs. Our analytical results suggested that the daily higher regimen specifically increased the number of eroded pores creating spaces between existing canals, thus stimulating cortical bone remodeling.

6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37446097

Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.


Bone Diseases , Endothelial Cells , Humans , Bone Development , Bone and Bones , Homeostasis
7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36769097

Degenerative joint disease of the temporomandibular joints (DJD-TMJ) clinically manifests with symptoms such as orofacial pain, joint sounds and limited jaw movements. Our research group previously reported the functional necessity of a chemokine-chemokine receptor axis of CCL5-CCR5 in osteoclasts. Accumulated studies reported that this axis was involved in the pathogenesis of bone and joint destructive diseases, suggesting CCL5 as a potent biomarker. This study investigated whether or not the serum level of CCL5 can be a biomarker of DJD-TMJ and concomitantly analyzed changes in the serum and urine levels of bone markers to see whether or not changes in the rate of bone metabolism were predisposing. We enrolled 17 female subjects with diagnosed DJD-TMJ and sexually and age-matched 17 controls. The serum CCL5 level in DJD-TMJ subjects was significantly higher than that in the control subjects. Multivariate analyses indicated an association between an augmented CCL5 level and the rate of bone metabolism, especially in relatively young DJD-TMJ subjects without other systemic symptoms. A principal component analysis of serum markers and our pharmacological experiment using a postmenopausal model of ovariectomized rats suggested that an augmented serum CCL5 level specifically reflected DJD-TMJ and that covert changes in the rate of bone metabolism predisposed individuals to DJD-TMJ.


Osteoarthritis , Temporomandibular Joint Disorders , Female , Animals , Rats , Temporomandibular Joint/pathology , Osteoarthritis/pathology , Osteoclasts , Biomarkers
8.
Sci Rep ; 12(1): 16799, 2022 10 07.
Article En | MEDLINE | ID: mdl-36207444

Osteoporosis is an age-related disorder that is characterized by reduced bone mass. Its prevention and treatment are important healthcare issues for maintaining social activity in aged societies. Although bone fractures mostly occur at sites of weakened cortical bone, pathophysiological and pharmacological evaluations of bone mass have tended to be predominantly assessed in trabecular bone. To statistically characterize cortical bone remodeling, we originally established multimode fluorescence imaging and artificial intelligence (AI)-driven morphometric analyses in six-month-old female rabbits with well-defined cortical remodeling, similar to that in humans. We evaluated three distinct administration frequencies of teriparatide [TPTD; human parathyroid hormone, hPTH (1-34)]: once (1/w), twice (2/w), and seven times (7/w) a week, with the same total dose (140 µg/kg/week). Our analyses revealed significant expansions of the osteocytic lacunar-canalicular system and Haversian canals accompanied by the development of cortical porosity and endosteal naïve bone formation induced by a frequent administration regimen (7/w) of TPTD; however, once-weekly (1/w) and twice-weekly (2/w) administration of TPTD showed little effect. These findings demonstrate a clear contrast between the effects of frequent and infrequent administration of TPTD on cortical bone metabolism and suggest that osteocytic bone remodeling is involved in the pharmacological action of PTH.


Bone Density Conservation Agents , Teriparatide , Aged , Animals , Artificial Intelligence , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Female , Fluorescence , Humans , Infant , Parathyroid Hormone/pharmacology , Rabbits , Teriparatide/pharmacology , Teriparatide/therapeutic use
9.
Front Cell Dev Biol ; 10: 884509, 2022.
Article En | MEDLINE | ID: mdl-35620056

Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with α-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.

10.
FEBS Open Bio ; 12(4): 835-851, 2022 04.
Article En | MEDLINE | ID: mdl-35293154

Genetic modification to restore cell functions in the brain can be performed through the delivery of biomolecules in a minimally invasive manner into live neuronal cells within brain tissues. However, conventional nanoscale needles are too short (lengths of ~10 µm) to target neuronal cells in ~1-mm-thick brain tissues because the neuronal cells are located deep within the tissue. Here, we report the use of nanoscale-tipped wire (NTW) arrays with diameters < 100 nm and wire lengths of ~200 µm to address biomolecule delivery issues. The NTW arrays were manufactured by growth of silicon microwire arrays and nanotip formation. This technique uses pinpoint, multiple-cell DNA injections in deep areas of brain tissues, enabling target cells to be marked by fluorescent protein (FP) expression vectors. This technique has potential for use for electrophysiological recordings and biological transfection into neuronal cells. Herein, simply pressing an NTW array delivers and expresses plasmid DNA in multiple-cultured cells and multiple-neuronal cells within a brain slice with reduced cell damage. Additionally, DNA transfection is demonstrated using brain cells ex vivo and in vivo. Moreover, knockdown of a critical clock gene after injecting a short hairpin RNA (shRNA) and a genome-editing vector demonstrates the potential to genetically alter the function of living brain cells, for example, pacemaker cells of the mammalian circadian rhythms. Overall, our NTW array injection technique enables genetic and functional modification of living cells in deep brain tissue areas, both ex vivo and in vivo.


Brain , DNA , Animals , Brain/metabolism , Mammals/genetics , Neurons , RNA, Small Interfering/genetics , Transfection
11.
Biochem Biophys Res Commun ; 590: 132-138, 2022 01 29.
Article En | MEDLINE | ID: mdl-34974301

Osteocytes are master regulators of skeletal homeostasis. However, little is known about the molecular mechanism of their differentiation. Epigenetic regulations, especially H3K27me3 modification, play critical roles in cell differentiation. Here, we found that H3K27me3 in the loci of osteocyte-expressing genes decreased during osteocyte differentiation and that H3K27me3 demethylase, Utx, was bound to the loci of those genes. To investigate the physiological functions of Utx in vivo, we generated late osteoblast-to-osteocyte specific Utx knockout mice using Dmp1-cre mice (UtxΔOcy/ΔOcy). Micro CT analyses showed that UtxΔOcy/ΔOcy displayed osteopenic phenotypes with lower bone volume and trabecular number, and greater trabecular separation. Bone histomorphometric analysis showed that bone mineralization and formation were significantly lower in UtxΔOcy/ΔOcy. Furthermore, Dmp1 expression and the number of osteocytes were significantly decreased in UtxΔOcy/ΔOcy. These results suggest that Utx in Dmp1-expressing osteoblast/osteocyte positively regulates osteoblast-to-osteocyte differentiation through H3K27me3 modifications in osteocyte genes. Our results provide new insight into the molecular mechanism of osteocyte differentiation.


Cell Differentiation , Histone Demethylases/metabolism , Histones/metabolism , Lysine/metabolism , Osteoblasts/cytology , Osteocytes/cytology , Animals , Base Sequence , Bone Diseases, Metabolic/genetics , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Cell Count , Cell Differentiation/genetics , Down-Regulation/genetics , Epigenome , Genetic Loci , Histone Demethylases/deficiency , Methylation , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteocytes/metabolism , Phenotype , Protein Processing, Post-Translational , Transcriptome/genetics
12.
Microscopy (Oxf) ; 70(6): 498-509, 2021 Nov 24.
Article En | MEDLINE | ID: mdl-34100544

The lamellar structure of bone, which endows biomechanical rigidity to support the host organism, is observed in mammals, including humans. It is therefore essential to develop a quantitative analysis to evaluate the lamellarity of bone, which would especially be useful for the pharmacological evaluation of anti-osteoporotic drugs. This study applied a current system for the semi-automatic recognition of fluorescence signals to the analysis of un-decalcified bone sections from rat and monkey specimens treated with teriparatide (TPTD). Our analyses on bone formation pattern and collagen topology indicated that TPTD augmented bone lamellarity and bone collagen linearity, which were possibly associated with the recovery of collagen cross-linking, thus endowing bone rigidity.


Bone and Bones/diagnostic imaging , Collagen , Teriparatide , Animals , Bone and Bones/drug effects , Female , Haplorhini , Ovariectomy , Rats , Teriparatide/pharmacology
13.
Bone Res ; 9(1): 11, 2021 Feb 10.
Article En | MEDLINE | ID: mdl-33568650

Tissue-resident macrophages are highly specialized to their tissue-specific microenvironments, activated by various inflammatory signals and modulated by genetic and environmental factors. Osteoclasts and microglia are distinct tissue-resident cells of the macrophage lineage in bone and brain that are responsible for pathological changes in osteoporosis and Alzheimer's disease (AD), respectively. Osteoporosis is more frequently observed in individuals with AD compared to the prevalence in general population. Diagnosis of AD is often delayed until underlying pathophysiological changes progress and cause irreversible damages in structure and function of brain. As such earlier diagnosis and intervention of individuals at higher risk would be indispensable to modify clinical courses. Pleiotropy is the phenomenon that a genetic variant affects multiple traits and the genetic correlation between two traits could suggest a shared molecular mechanism. In this review, we discuss that the Pyk2-mediated actin polymerization pathway in osteoclasts and microglia in bone and brain, respectively, is the horizontal pleiotropic mediator of shared risk factors for osteoporosis and AD.

14.
Dev Growth Differ ; 63(3): 219-227, 2021 Apr.
Article En | MEDLINE | ID: mdl-33595856

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic as of early 2020. Upon infection, SARS-CoV-2 attaches to its receptor, that is, angiotensin-converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID-19 vary among individuals, genetic risk factors for severe COVID-19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS-CoV-2-interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome-wide association studies have identified genetic risk factors for severe COVID-19 cases in a segment of chromosome 3 that involves six genes encoding three immune-regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS-CoV-2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS-CoV-2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.


Adaptive Immunity , COVID-19 , Evolution, Molecular , Genetic Variation , Host-Pathogen Interactions , SARS-CoV-2/genetics , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , COVID-19/epidemiology , COVID-19/genetics , COVID-19/immunology , Conserved Sequence , Genome-Wide Association Study , Host Adaptation/genetics , Host Adaptation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Pandemics , SARS-CoV-2/immunology , Sequence Analysis, RNA
15.
J Bone Miner Metab ; 39(2): 148-159, 2021 Mar.
Article En | MEDLINE | ID: mdl-32844318

INTRODUCTION: Mechanical stimuli regulate Sclerostin (Scl), a negative regulator of bone formation, expression in osteocytes. However, the detailed Scl distribution in osteocytes in response to mechanical unloading remains unclear. MATERIALS AND METHODS: Twelve-week-old male rats were used. The sciatic and femoral nerves on the right side were excised as mechanical unloading treatment. A sham operation was performed on the left side. One week after neurotrauma, the bone density of the femora was evaluated by peripheral quantitative computed tomography, and immunofluorescence was performed in coronal sections of the femoral diaphysis. The mean fluorescence intensity and fluorescent profile of Scl from the marrow to the periosteal side were analyzed to estimate the Scl expression and determine to which side (marrow or periosteal) the Scl prefers to distribute in response to mechanical unloading. The most sensitive region indicated by the immunofluorescence results was further investigated by transmission electron microscopy (TEM) with immunogold staining to show the Scl expression changes in different subcellular structures. RESULTS: In femur distal metaphysis, neurotrauma-induced mechanical unloading significantly decreased the bone density, made the distribution of Scl closer to the marrow on the anterior and medial side, and increased the Scl expression only on the lateral side. TEM findings showed that only the expression of Scl in canaliculi was increased by mechanical unloading. CONCLUSIONS: Our results showed that even short-term mechanical unloading is enough to decrease bone density, and mechanical unloading not only regulated the Scl expression but also changed the Scl distribution in both the osteocyte network and subcellular structures.


Bone Morphogenetic Proteins/metabolism , Osteocytes/metabolism , Stress, Mechanical , Animals , Bone Density , Diaphyses/diagnostic imaging , Diaphyses/pathology , Femur/diagnostic imaging , Femur/pathology , Femur/ultrastructure , Genetic Markers , Male , Osteocytes/ultrastructure , Osteogenesis , Periosteum/diagnostic imaging , Periosteum/pathology , Rats, Sprague-Dawley , Tomography, X-Ray Computed
17.
Sci Rep ; 10(1): 5346, 2020 03 24.
Article En | MEDLINE | ID: mdl-32210273

Clinical studies have reported that teriparatide (TPTD), a human parathyroid hormone analog, reduces back pain in osteoporotic patients. However, the mechanistic insights of this pharmacological action remain elusive. This study investigated the antinociceptive effect of TPTD mainly on primary sensory neurons in ovariectomized (OVX) rats. The plantar test showed thermal hyperalgesia in the OVX rats, which was significantly, but not fully, recovered immediately after the initial TPTD administration. The von Frey test also demonstrated reduced withdrawal threshold in the OVX rats. This was partially recovered by TPTD. Consistently, the number and size of spinal microglial cells were significantly increased in the OVX rats, while TPTD treatment significantly reduced the number but not size of these cells. RNA sequencing-based bioinformatics of the dorsal root ganglia (DRG) demonstrated that changes in neuro-protective and inflammatory genes were involved in the pharmacological effect of TPTD. Most neurons in the DRG expressed substantial levels of parathyroid hormone 1 receptor. TPTD treatment of the cultured DRG-derived neuronal cells reduced the cAMP level and augmented the intracellular calcium level as the concentration increased. These findings suggest that TPTD targets neuronal cells as well as bone cells to exert its pharmacological action.


Analgesics/pharmacology , Hyperalgesia/drug therapy , Ovariectomy/adverse effects , Teriparatide/pharmacology , Animals , Bone Density/drug effects , Bone Density Conservation Agents/pharmacology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hyperalgesia/etiology , Microglia/drug effects , Pain/drug therapy , Parathyroid Hormone/metabolism , Rats, Sprague-Dawley , Receptor, Parathyroid Hormone, Type 1/genetics , Spinal Cord/cytology
18.
Bone ; 122: 93-100, 2019 05.
Article En | MEDLINE | ID: mdl-30771488

Zinc finger and SCAN domain containing 10 (Zscan10) was identified as a novel transcription factor that is involved in osteoclast differentiation in our previous report. However, the biological functions of Zscan10 are not fully understood except its roles in the maintenance of genome stability and pluripotency of embryonic stem cells. Therefore, the purpose of this study was to clarify the function of Zscan10 in somatic cells, especially during osteoclast differentiation. First, Zscan10 KO RAW264 (KO) cells were established by genome editing using CRISPR/Cas9 and single cell sorting. Then, control (Ctrl) and KO cells were differentiated into osteoclasts by RANKL stimulation. We observed that TRAP activity and the expression levels of differentiation marker genes, such as Nfatc1, were significantly increased and the expression of inhibitory factors, such as Irf8, was decreased in KO cells compared to Ctrl cells. These results suggest that Zscan10 might regulate transcription of the genes that negatively control osteoclastogenesis. To understand gene expression profiles controlled by Zscan10, RNA-seq was performed and stringent analyses identified the haptoglobin gene (Hp) as a possible target of Zscan10. In addition, ChIP against Zscan10 revealed that Zscan10 could interact with its binding motif located near the Hp gene locus as well as the transcription start site of Hp, suggesting that Zscan10 can directly regulate transcription of Hp. Finally, to examine the effects of Hp on osteoclastogenesis, KO cells were treated with recombinant Hp (rHp). rHp treatment suppressed TRAP activity of KO cells without affecting cell viability. Furthermore, it has been reported that Hp KO mice exhibit decreased bone mass and increased osteoclast number. Importantly, hemolytic disease patients exhibited decreased serum level of Hp as well as low bone mineral density. Taken together, this study suggests that Zscan10 negatively regulates osteoclast differentiation through transcription of Hp.


Cell Differentiation/genetics , Gene Expression Regulation , Haptoglobins/genetics , Osteoclasts/cytology , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Base Sequence , Female , Haptoglobins/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/chemistry , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic
19.
Molecules ; 23(12)2018 Nov 25.
Article En | MEDLINE | ID: mdl-30477282

Bone mineral density (BMD) is a commonly used diagnostic indicator for bone fracture risk in osteoporosis. Along with low BMD, bone fragility accounts for reduced bone quality in addition to low BMD, but there is no diagnostic method to directly assess the bone quality. In this study, we investigated changes in bone quality using the Raman spectroscopic technique. Sciatic neurectomy (NX) was performed in male C57/BL6J mice (NX group) as a model of disuse osteoporosis, and sham surgery was used as an experimental control (Sham group). Eight months after surgery, we acquired Raman spectral data from the anterior cortical surface of the proximal tibia. We also performed a BMD measurement and micro-CT measurement to investigate the pathogenesis of osteoporosis. Quantitative analysis based on the Raman peak intensities showed that the carbonate/phosphate ratio and the mineral/matrix ratio were significantly higher in the NX group than in the Sham group. There was direct evidence of alterations in the mineral content associated with mechanical properties of bone. To fully understand the spectral changes, we performed principal component analysis of the spectral dataset, focusing on the matrix content. In conclusion, Raman spectroscopy provides reliable information on chemical changes in both mineral and matrix contents, and it also identifies possible mechanisms of disuse osteoporosis.


Bone and Bones/chemistry , Denervation , Sciatic Nerve/surgery , Spectrum Analysis, Raman , Animals , Bone Density , Bone and Bones/diagnostic imaging , Collagen/chemistry , Mice , Principal Component Analysis , X-Ray Microtomography
20.
Sci Rep ; 8(1): 3696, 2018 02 27.
Article En | MEDLINE | ID: mdl-29487358

Upon invasion, Plasmodium falciparum exports hundreds of proteins across its surrounding parasitophorous vacuole membrane (PVM) to remodel the infected erythrocyte. Although this phenomenon is crucial for the parasite growth and virulence, elucidation of precise steps in the export pathway is still required. A translocon protein complex, PTEX, is the only known pathway that mediates passage of exported proteins across the PVM. P. falciparum Parasitophorous Vacuolar protein 1 (PfPV1), a previously reported parasitophorous vacuole (PV) protein, is considered essential for parasite growth. In this study, we characterized PfPV1 as a novel merozoite dense granule protein. Structured illumination microscopy (SIM) analyses demonstrated that PfPV1 partially co-localized with EXP2, suggesting the protein could be a PTEX accessory molecule. Furthermore, PfPV1 and exported protein PTP5 co-immunoprecipitated with anti-PfPV1 antibody. Surface plasmon resonance (SPR) confirmed the proteins' direct interaction. Additionally, we identified a PfPV1 High-affinity Region (PHR) at the C-terminal side of PTP5 where PfPV1 dominantly bound. SIM analysis demonstrated an export arrest of PTP5ΔPHR, a PTP5 mutant lacking PHR, suggesting PHR is essential for PTP5 export to the infected erythrocyte cytosol. The overall results suggest that PfPV1, a novel dense granule protein, plays an important role in protein export at PV.


Erythrocytes/parasitology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Cytosol , Humans , Immunoprecipitation , Microscopy , Plasmodium falciparum/pathogenicity , Protein Binding , Protein Transport , Protozoan Proteins/genetics
...