Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 130
1.
J Nat Prod ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840407

Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.

3.
Sci Rep ; 14(1): 2344, 2024 01 29.
Article En | MEDLINE | ID: mdl-38282042

The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.


CME-Carbodiimide/analogs & derivatives , Sensorimotor Cortex , Spinal Cord Compression , Spinal Cord Diseases , Humans , Spinal Cord Compression/surgery , Spinal Cord Diseases/diagnostic imaging , Cervical Vertebrae/surgery , Magnetic Resonance Imaging , Sensorimotor Cortex/diagnostic imaging
4.
J Clin Neurophysiol ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38194632

PURPOSE: The disc level in the thoracolumbar junction at which measurement of the central motor conduction time in the lower limbs (CMCT-LL) is useful for a diagnosis remains unclear. Therefore, this study investigated the spinal vertebral level at which compressive myelopathy due to ossification of the ligamentum flavum in the thoracolumbar junction is detectable using CMCT-LL. METHODS: We preoperatively measured CMCT-LL in 57 patients (42 men, 15 women; aged 35-85 years) with a single ossification of the ligamentum flavum from the T10-11 to T12-L1 disc levels and in 53 healthy controls. Motor evoked potentials after transcranial magnetic stimulation, compound muscle action potentials, and F waves were recorded from the abductor hallucis. Central motor conduction time in the lower limbs was calculated as follows: Motor evoked potential latency - (compound muscle action potential latency + F latency - 1)/2 (ms). Central motor conduction time in the lower limbs was compared between patients and controls. RESULTS: Compressive lesions were located at the T10 to 11 level in 27 patients, the T11 to 12 level in 28, and the T12-L1 level in 2. Central motor conduction time values in the lower limbs at the T10 to 11 level (19.9 ± 4.7 ms) and T11 to 12 level (18.1 ± 3.4 ms) were significantly longer than control values (11.8 ± 1.1 ms; P < 0.01). Central motor conduction time in the lower limbs was not calculated at the T12-L1 level because motor evoked potentials were not recorded in any patient. CONCLUSIONS: We confirmed that CMCT-LL was significantly longer in patients with ossification of the ligamentum flavum at the T10 to 11 and T11 to 12 levels because the S2 segment of the spinal cord is caudal at the T12 vertebral body level. Therefore, CMCT-LL is useful for diagnosing thoracolumbar junction disorders proximal to the T12 vertebral body level.

5.
J Antibiot (Tokyo) ; 77(1): 66-70, 2024 01.
Article En | MEDLINE | ID: mdl-37903880

Cancer cells including colorectal cancer cells are resistant to anoikis, an anchorage-independent programmed death, which enables metastasis and subsequent survival in a new tumor microenvironment. In this study, we identified a new anoikis inducer, amoxetamide A (1) with a ß-lactone moiety, that was produced by combined-culture of Amycolatopsis sp. 26-4 and mycolic acid-containing bacteria (MACB) Tsukamurella pulmonis TP-B0596. The structure of 1 including the stereochemistry of C8 was determined by MS and NMR spectroscopy and modified Mosher's method, and the absolute configurations of C11 and C12 were suggested as 11R and 12S, respectively, by GIAO NMR calculations. Amoxetamide A (1) exhibited anoikis-inducing activity in human colorectal cancer HT-29 cells in anchorage-independent culture conditions.


Actinobacteria , Colorectal Neoplasms , Humans , Amycolatopsis , Anoikis , Colorectal Neoplasms/drug therapy , Tumor Microenvironment
6.
Eur J Pharmacol ; 960: 176156, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38059445

Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed. In this study, we established and applied a system for in vitro screening of ASNS inhibitors, and found a promising unique bisabolane-type meroterpenoid molecule, bisabosqual A (Bis A), able to covalently modify K556 site of ASNS protein. Bis A targeted ASNS to suppress cell proliferation of human non-small cell lung cancer A549 cells and exhibited a synergistic effect with L-asparaginase (L-ASNase). Mechanistically, Bis A promoted oxidative stress and apoptosis, while inhibiting autophagy, cell migration and epithelial-mesenchymal transition (EMT), impeding cancer cell development. Moreover, Bis A induced negative feedback pathways containing the GCN2-eIF2α-ATF4, PI3K-AKT-mTORC1 and RAF-MEK-ERK axes, but combination treatment of Bis A and rapamycin/torin-1 overcame the potential drug resistance triggered by mTOR pathways. Our study demonstrates that ASNS inhibition is promising for cancer chemotherapy, and Bis A is a potential lead ASNS inhibitor for anticancer development.


Aspartate-Ammonia Ligase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Asparagine/pharmacology , Asparagine/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Aspartate-Ammonia Ligase/metabolism , A549 Cells , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation
7.
Cancer Sci ; 114(11): 4172-4183, 2023 Nov.
Article En | MEDLINE | ID: mdl-37675556

Adoptive immunotherapy using genetically engineered patient-derived lymphocytes to express tumor-reactive receptors is a promising treatment for malignancy. However, utilization of autologous T cells in this therapy limits the quality of gene-engineered T cells, thereby inhibiting the timely infusion of the cells into patients. In this study, we evaluated the anti-tumor efficacy and the potential to induce graft-versus-host disease (GVHD) in T cell receptor (TCR) gene-engineered allogeneic T cells that downregulate the endogenous TCR and HLA class I molecules with the aim of developing an "off-the-shelf" cell product with expanded application of genetically engineered T cells. We transduced human lymphocytes with a high-affinity TCR specific to the cancer/testis antigen NY-ESO-1 using a novel retrovirus vector with siRNAs specific to the endogenous TCR (siTCR vector). These T cells showed reduced expression of endogenous TCR and minimized reactivity to allogeneic cells in vitro. In non-obese diabetic/SCID/γcnull mice, TCR gene-transduced T cells induced tumor regression without development of GVHD. A lentivirus-based CRISPR/Cas9 system targeting ß-2 microglobulin in TCR gene-modified T cells silenced the HLA class I expression and prevented allogeneic CD8+ T cell stimulation without disrupting their anti-tumor capacity. This report is the first demonstration that siTCR technology is effective in preventing GVHD. Adoptive cell therapy with allogeneic T cells engineered with siTCR vector may be useful in developing an "off-the-shelf" therapy for patients with malignancy.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Neoplasms , Mice , Animals , Humans , RNA, Small Interfering/genetics , Allogeneic Cells/metabolism , Mice, SCID , Receptors, Antigen, T-Cell , Genes, T-Cell Receptor , Immunotherapy, Adoptive , Neoplasms/genetics , Graft vs Host Disease/prevention & control
8.
Anticancer Res ; 43(10): 4739-4745, 2023 Oct.
Article En | MEDLINE | ID: mdl-37772568

BACKGROUND: Osteosarcoma, the most common primary malignant bone tumor in childhood, very rarely occurs in the spine. Criteria of complete tumor resection/stable reconstruction of osteosarcoma and the latest protocol of neoadjuvant chemotherapy of the spine have not been reported because of its rarity, technical difficulties, and its continued severe surgical risk. CASE REPORT: A 11-year-old female complained of back pain for several months and walking disability. The workup discovered a large destructive bone lesion in the thoracic 12th (Th12) with vertebral body collapse and subluxation, large amount of associated anteroposterior soft tissue components, and narrowing of the spinal canal. Histology at the 1st decompression and emergent instrumentation surgery revealed giant cell-rich osteosarcoma. Following the 1st surgery, we performed three cycles of neoadjuvant chemotherapy based on the osteosarcoma 95J (NECO95J) protocol and evaluated efficacy of chemotherapy on the Th12 tumor. The tumor was isolated only to Th12 spine following chemotherapy. Therefore, following vascular embolization of the Th12 tumor, we performed surgical resection by single posterior approach that included total en bloc spondylectomy (TES). She recovered well postoperatively, without motor or sensory deficit and no back pain. Six cycles of postoperative neoadjuvant chemotherapy were administered after the 2nd surgery and TES. The patient was disease-free at the 8-months clinical and radiological follow-up and showed no neurological involvement at 8-months. CONCLUSION: We reported a case of pediatric spinal osteosarcoma, the surgical technique of complete tumor resection, and stable reconstruction of spinal osteosarcoma. We also discussed the recent neoadjuvant chemotherapy protocol for osteosarcoma.


Osteosarcoma , Spinal Neoplasms , Female , Humans , Child , Follow-Up Studies , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/surgery , Spine/pathology , Osteosarcoma/surgery , Giant Cells/pathology
9.
Yakugaku Zasshi ; 143(8): 655-662, 2023.
Article Ja | MEDLINE | ID: mdl-37532574

We created a one-minute video titled "a simple method of eye-drop instillation" (video) for online instillation guidance, to compare the instillation method before and after study participants watch the video and verify the usefulness of watching the video. Moreover, we prepared a document questionnaire to investigate instillation habits and clarify instillation behavior. Study participants were randomly recruited from among students and faculty members via a poster posted at Tokushima Bunri University. The instillation behavior of the study participants was videotaped before and after they watched the video created by the authors. The images were played in a super slow motion, to confirm success or failure in instillation, drop sites, and eye-opening method. Of the 109 participants in the study, the successful instillation rate before and after watching the video was 55.0% and 69.7%, respectively. The use rate of wet wipes for finger disinfection before instillation increased from 0.0% before watching the video to 74.3% after watching the video. After watching the video, the blinking rate after instillation decreased from 95.4 to 45.0%, the rate of pressing the nasolacrimal duct increased from 2.8 to 77.1%, and the rate of wiping the drug solution spilled around the eyes increased from 89.9 to 98.2%. According to the questionnaire, 72.5% of the participants instilled one drop, 22.0% instilled two drops, and 5.5% instilled three drops or more. Watching the video significantly increased the successful instillation rate and improved instillation behavior. Thus, the video created by the authors can be used for online instillation guidance.


Eye , Humans , Ophthalmic Solutions
10.
Sci Rep ; 13(1): 13043, 2023 08 10.
Article En | MEDLINE | ID: mdl-37563245

Quantitative sensory testing (QST) is useful when analysing musculoskeletal pain disorders. A handheld algometer is most commonly used for pressure pain threshold (PPT) tests. However, reference intervals for PPTs are not elucidated. We assessed reference intervals of PPTs for QST in 158 healthy adult Japanese with no history of musculoskeletal or neurological problems. A handheld algometer was used to record PPT at five different assessment sites on the body: lumbar paravertebral muscle, musculus gluteus maximus, quadriceps, tibialis anterior muscle, and anterior talofibular ligament. Multiple regression analysis was performed to explore sources of variation of PPT according to sex, age, body mass index, UCLA Activity Level Rating, and Tegner Activity Score. Reference intervals were determined parametrically by Gaussian transformation of PPT values using the two-parameter Box-Cox formula. Results of multiple regression analysis revealed that age was significantly associated with PPT of lumbar paravertebral muscle and musculus gluteus maximus. In females, body mass index showed significant positive correlation with PPT of anterior talofibular ligament, and UCLA Activity Level Rating also showed significant positive association with tibialis anterior muscle and anterior talofibular ligament. Site-specific reference intervals of PPTs for Japanese are of practical relevance in fields of pain research using a handheld algometer.


East Asian People , Musculoskeletal Pain , Pain Measurement , Pain Threshold , Adult , Female , Humans , Muscle, Skeletal , Pain Measurement/instrumentation , Pain Measurement/methods , Pain Threshold/physiology , Musculoskeletal Pain/diagnosis , Musculoskeletal Pain/physiopathology , Pressure , Reference Values , Healthy Volunteers
11.
World Neurosurg ; 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37422188

OBJECTIVE: Thoracolumbar vertebral fractures are one of the most common fractures; however, there is a lack of mechanical analyses for what the posterior fixation is for different spine alignments. METHODS: This study used a three-dimensional finite element model of a T1-sacrum. Three alignment models were created: intact, degenerative lumbar scoliosis (DLS), and adolescent idiopathic scoliosis (AIS). The burst fracture was assumed to be at the L1 vertebral level. Posterior fixation models with pedicle screws (PS) were constructed for each model: 1 vertebra above to 1 below PS (4PS) and 1 vertebra above to 1 below PS with additional short PS at the L1 (6PS); intact-burst-4PS, intact-burst-6PS, DLS-burst-4PS, DLS-burst-6PS, AIS-burst-4PS, and AIS-burst-6PS models. T1 was loaded with a moment of 4 Nm assuming flexion and extension. RESULTS: The vertebrae stress varied with spinal alignment. The stress of L1 in intact burst (IB), DLS burst, and AIS burst increased by more than 190% compared with each nonfractured model. L1 stress in IB, DLS, and AIS-4PS increased to more than 47% compared with each nonfractured model. L1 stress in IB, DLS, and AIS-6PS increased to more than 25% compared with each nonfractured model. In flexion and extension, stress on the screws and rods of intact-burst-6PS, DLS-6PS, and AIS-6PS was lower than in the intact-burst-4PS, DLS-4PS, and AIS-4PS models. CONCLUSIONS: It may be more beneficial to use 6PS compared with 4PS to reduce stresses on the fractured vertebrae and instrumentation, regardless of the spinal alignment.

12.
Phys Rev Lett ; 130(25): 256801, 2023 Jun 23.
Article En | MEDLINE | ID: mdl-37418743

In solid state physics, any phase transition is commonly observed as a change in the microscopic distribution of charge, spin, or current. However, there is an exotic order parameter inherent in the localized electron orbitals that cannot be primarily captured by these three fundamental quantities. This order parameter is described as the electric toroidal multipoles connecting different total angular momenta under the spin-orbit coupling. The corresponding microscopic physical quantity is the spin current tensor on an atomic scale, which induces spin-derived electric polarization aligned circularly and the chirality density of the Dirac equation. Here, elucidating the nature of this exotic order parameter, we obtain the following general consequences that are not restricted to localized electron systems; chirality density is indispensable to unambiguously describe electronic states and it is a species of electric toroidal multipoles, just as the charge density is a species of electric multipoles. Furthermore, we derive the equation of continuity for chirality and discuss its relation to chiral anomaly and optical chirality. These findings link microscopic spin currents and chirality in the Dirac theory to the concept of multipoles and provide a new perspective for quantum states of matter.


Electricity , Electrons , Motion , Phase Transition , Physics
13.
J Phys Condens Matter ; 35(19)2023 Mar 14.
Article En | MEDLINE | ID: mdl-36866651

Understanding the various competing phases in cuprate superconductors is a long-standing challenging problem. Recent studies have shown that orbital degrees of freedom, both Cuegorbitals and Oporbitals, are a key ingredient for a unified understanding of cuprate superconductors, including the material dependence. Here we investigate a four-bandd-pmodel derived from the first-principles calculations with the variational Monte Carlo method, which allows us to elucidate competing phases on an equal footing. The obtained results can consistently explain the doping dependence of superconductivity, antiferromagnetic and stripe phases, phase separation in the underdoped region, and also novel magnetism in the heavily-overdoped region. The presence ofporbitals is critical to the charge-stripe features, which induce two types of stripe phases withs)-wave andd-wave bond stripe. On the other hand, the presence ofdz2orbital is indispensable to material dependence of the superconducting transition temperature (Tc), and enhances local magnetic moment as a source of novel magnetism in the heavily-overdoped region as well. These findings beyond one-band description could provide a major step toward a full explanation of unconventional normal state and highTcin cuprate supercondutors.

14.
J Clin Neurosci ; 111: 26-31, 2023 May.
Article En | MEDLINE | ID: mdl-36924657

BACKGROUND: Elderly patients with degenerative cervical myelopathy frequently have severe symptoms due to spondylolisthesis. The effectiveness of laminoplasty for degenerative cervical spondylolisthesis (DCS) is an important question. OBJECTIVE: The aim of this study is to elucidate factors associated with the outcome of laminoplasty for DCS. METHOD: Eighty-nine patients with cervical spondylotic myelopathy (CSM) who underwent laminoplasty without instrumented posterior fusion were enrolled. Positive spondylolisthesis was defined as more than 2 mm during neck flexion or extension, from this, 46 DCS cases and 43 non-DCS cases were classified. Radiological parameters, including cervical alignment, balance, range of motion, and slippage along with the Japanese Orthopedic Association (JOA) score, were obtained before and 1 year after surgery. Factors associated with good surgical outcomes for DCS were analyzed using multivariate logistic analysis. RESULTS: There were no significant differences in background and preoperative JOA score, but the DCS group recovery rate was significantly less (42% vs 53%). Multivariate logistic analysis revealed only the postoperative C2-7 angle during neck flexion was associated with a favorable outcome for DCS (P = 0.0039, Odds ratio: 1.49, 95% CI: 1.14-1.94). Multivariate regression analysis positively correlated the preoperative C2-7 angle in neutral and during flexion with the postoperative C2-7 angle during flexion. CONCLUSION: The major factor related to poor outcome was the magnitude of postoperative kyphotic C2-7 angle during neck flexion. Slippage was not directly related to outcome and postoperative cervical alignment. Caution is recommended for surgeons performing laminoplasty on patients with risk factors for postoperative excessive kyphotic C2-7 angle during flexion.


Kyphosis , Laminoplasty , Spinal Cord Diseases , Spondylolisthesis , Spondylosis , Humans , Aged , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Spondylolisthesis/complications , Laminoplasty/adverse effects , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/etiology , Spinal Cord Diseases/surgery , Kyphosis/diagnostic imaging , Kyphosis/etiology , Kyphosis/surgery , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Treatment Outcome , Retrospective Studies , Spondylosis/diagnostic imaging , Spondylosis/surgery , Spondylosis/complications
15.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article En | MEDLINE | ID: mdl-36768846

Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.


Biocompatible Materials , Spinal Cord Injuries , Humans , Biocompatible Materials/therapeutic use , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Spinal Cord Injuries/therapy , Stem Cell Transplantation , Spinal Cord
16.
BMJ Open ; 12(11): e065109, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36375974

INTRODUCTION: Adoptive cell transfer of genetically engineered T cells is a promising treatment for malignancies; however, there are few ideal cancer antigens expressed on the cell surface, and the development of chimeric antigen receptor T cells (CAR-T cells) for solid tumour treatment has been slow. CAR-T cells, which recognise major histocompatibility complex and peptide complexes presented on the cell surface, can be used to target not only cell surface antigens but also intracellular antigens. We have developed a CAR-T-cell product that recognises the complex of HLA-A*02:01 and an epitope of the MAGE-A4 antigen equipped with a novel signalling domain of human GITR (investigational product code: MU-MA402C) based on preclinical studies. METHODS AND ANALYSIS: This is a dose-escalation, multi-institutional, phase 1 study to evaluate the tolerability and safety of MU-MA402C for patients with MAGE A4-positive and HLA-A*02:01-positive unresectable advanced or recurrent solid cancer. Two dose cohorts are planned: cohort 1, MU-MA402C 2×108/person; cohort 2, MU-MA402C 2×109/person. Prior to CAR-T-cell infusion, cyclophosphamide (CPA) and fludarabine (FLU) will be administered as preconditioning chemotherapy. Three evaluable subjects per cohort, for a total of 6 subjects (maximum of 12 subjects), will be recruited for this clinical trial. The primary endpoints are safety and tolerability. The severity of each adverse event will be evaluated in accordance with Common Terminology Criteria for Adverse Events V.5.0. The secondary endpoint is efficacy. Antitumour response will be evaluated according to Response Evaluation Criteria in Solid Tumours V.1.1. ETHICS AND DISSEMINATION: This clinical trial will be conducted in accordance with the current version of Good Clinical Practice. The protocol was approved by the Clinical Research Ethics Review Committee of Mie University Hospital (approval number F-2021-017). The trial results will be published in peer-reviewed journals and/or disseminated through international conferences. TRIAL REGISTRATION NUMBER: jRCT2043210077.


Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/therapeutic use , Neoplasms/drug therapy , Recurrence , Cell- and Tissue-Based Therapy , Peptides/therapeutic use , HLA-A Antigens/therapeutic use , Clinical Trials, Phase I as Topic , Multicenter Studies as Topic
17.
J Antibiot (Tokyo) ; 75(12): 671-678, 2022 12.
Article En | MEDLINE | ID: mdl-36207416

Targeting and eradicating cancer stem cells (CSCs), also termed tumor-initiating cells, are promising strategies for preventing cancer progression and recurrence. To identify candidate compounds targeting CSCs, we established a new screening strategy with colorectal CSC spheres and non-CSC spheres in three-dimensional (3D) culture system. Through chemical screening using our system with in-house microbial metabolite library, we identified polyether cation ionophores that selectively inhibited CSC sphere formation, whereas CSC spheres were resistant to conventional anticancer agents. One of the hit compounds, the most selective and effective microbial metabolite lenoremycin, decreased CSC populations via inducing reactive oxygen species production. This study demonstrated that our newly established screening system is useful for discovering agents that selectively eliminate CSCs.


Early Detection of Cancer , Neoplasms , Ionophores/pharmacology , Ionophores/metabolism , Neoplastic Stem Cells/metabolism , Ethers
18.
J Immunother Cancer ; 10(6)2022 06.
Article En | MEDLINE | ID: mdl-35768164

BACKGROUND: Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS: We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS: In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS: The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER: NCT02366546.


Cytokine Release Syndrome , Immunotherapy , Neoplasms , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm , Cyclophosphamide , Cytokine Release Syndrome/therapy , Cytokines/metabolism , Humans , Membrane Proteins , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
19.
Cancer Immunol Immunother ; 71(11): 2743-2755, 2022 Nov.
Article En | MEDLINE | ID: mdl-35429246

The aim of this study was to determine the efficacy and the biomarkers of the CHP-NY-ESO-1 vaccine complexed with full-length NY-ESO-1 protein and a cholesteryl pullulan (CHP) in patients with esophageal squamous cell carcinoma (ESCC) after surgery. We conducted a randomized phase II trial. Fifty-four patients with NY-ESO-1-expressing ESCC who underwent radical surgery following cisplatin/5-fluorouracil-based neoadjuvant chemotherapy were assigned to receive either CHP-NY-ESO-1 vaccination or observation as control. Six doses of CHP-NY-ESO-1 were administered subcutaneously once every two weeks, followed by nine more doses once every four weeks. The endpoints were disease-free survival (DFS) and safety. Exploratory analysis of tumor tissues using gene-expression profiles was also performed to seek the biomarker. As there were no serious adverse events in 27 vaccinated patients, we verified the safety of the vaccine. DFS in 2 years were 56.0% and 58.3% in the vaccine arm and in the control, respectively. Twenty-four of 25 patients showed NY-ESO-1-specific IgG responses after vaccination. Analysis of intra-cohort correlations among vaccinated patients revealed that 5% or greater expression of NY-ESO-1 was a favorable factor. Comprehensive analysis of gene expression profiles revealed that the expression of the gene encoding polymeric immunoglobulin receptor (PIGR) in tumors had a significantly favorable impact on outcomes in the vaccinated cohort. The high PIGR-expressing tumors that had higher NY-ESO-1-specific IgA response tended to have favorable prognosis. These results suggest that PIGR would play a major role in tumor immunity in an antigen-specific manner during NY-ESO-1 vaccinations. The IgA response may be relevant.


Cancer Vaccines , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Receptors, Polymeric Immunoglobulin , Antibodies, Neoplasm , Antigens, Neoplasm , Cisplatin , Esophageal Squamous Cell Carcinoma/drug therapy , Fluorouracil , Glucans , Humans , Immunoglobulin A , Immunoglobulin G , Membrane Proteins , Prognosis
20.
J Immunother Cancer ; 10(2)2022 02.
Article En | MEDLINE | ID: mdl-35115364

BACKGROUND: Cancer immunotherapy shows insufficient efficacy for low immunogenic tumors. Furthermore, tumors often downregulate antigen and major histocompatibility complex expression to escape recognition by T cells, resulting in insufficient T cell receptor (TCR) stimulation in the tumor microenvironment. Thus, augmenting TCR-mediated recognition of tumor antigens is a useful strategy to improve the efficacy of cancer immunotherapy. METHODS: We screened 310 small molecules from our library and identified PQDN, a small molecule that activates CD8 T cells after TCR engagement, even when antigen stimulation is too weak for their activation. We used inhibitors of mitochondrial functions and Seahorse Flux Analyzer to investigate the mechanism underlying the effect of PQDN on T cells. Effect of PQDN on tumor-infiltrating CD8 T cells was examined using flow cytometry and TCR repertoire analysis. RESULTS: PQDN increased mitochondrial reciprocal capacity through enhancement of electron transport chains (ETCs) and facilitated glycolysis via mTOR/AKT signaling, resulting in augmented CD8 T cell activation, even when antigen stimulation is extremely weak. Intratumoral administration of this compound into tumor-bearing mice tunes inactivated T cell with tumor antigen recognition potent and expanded functional T cell receptor diversity of tumor-infiltrating T cells, augmenting antitumor immune responses and retarding tumor growth. Furthermore, PQDN has a synergistic potent with T cell dependent immunotherapy, such as checkpoint inhibitory therapy or adoptive cell therapy, even in a low immunogenic tumor. We also demonstrated that this compound enhances the activation of human CD8 T cells. CONCLUSIONS: These data suggest that tuning the T cell activation threshold by chemical activation of mitochondrial ETC is a new strategy for improving therapeutic efficacy through the activation of low-avidity tumor-specific T cells.


Electron Transport/immunology , Immunotherapy/methods , Metabolic Networks and Pathways/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/metabolism , Animals , Disease Models, Animal , Female , Humans , Mice , Tumor Microenvironment
...