Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
2.
J Dermatol Sci ; 114(1): 13-23, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448341

BACKGROUND: The aberrant expression of tight junction (TJ) proteins play an important role in several diseases with impaired skin barriers, including atopic dermatitis, psoriasis, and chronic wounds. The evidence provided thus far suggests an important role of calcitriol in skin homeostasis. However, it is not known whether calcitriol improves the impaired skin barrier. OBJECTIVE: To investigate the effect of calcitriol on TJ barrier function in human primary keratinocytes. METHODS: Normal human primary keratinocytes were stimulated with calcitriol, and the expression of TJ-related proteins was measured by real-time PCR and Western blotting. Immunofluorescence was used to examine the intercellular distribution of TJ-related proteins. TJ barrier function was assessed by the transepithelial electrical resistance (TER) assay. RESULTS: We demonstrated that calcitriol increased the expression levels of TJ-related proteins, including claudin-4, claudin-7, occludin, and zonula occludens (ZO)- 1. Calcitriol enhanced the distribution of TJ-related proteins at cellcell borders and induced the phosphorylation of pathways involved in the regulation of TJ barrier function, such as atypical protein kinase C (aPKC), Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt), as evidenced by the effects of specific inhibitors on the above pathways. Indeed, we confirmed that calcitriol enhanced TER in keratinocyte monolayers. CONCLUSION: These findings showed that calcitriol could modify the expression of keratinocyte TJ proteins, contributing to the maintenance of homeostatic barrier function.


Calcitriol , Epidermis , Keratinocytes , Tight Junctions , Humans , Calcitriol/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Cells, Cultured , Epidermis/drug effects , Epidermis/metabolism , Signal Transduction/drug effects , Phosphorylation/drug effects , Occludin/metabolism , Primary Cell Culture , Zonula Occludens-1 Protein/metabolism , Claudins/metabolism , Claudins/genetics , Electric Impedance
4.
Med Mycol J ; 64(3): 73-77, 2023.
Article En | MEDLINE | ID: mdl-37648501

The patient was a 13-year-old boy who was a member of the judo club at his junior high school. Approximately 1 week prior to his presentation, he developed multiple erythematous pilaris papules on his occipital area and was treated by a local doctor. The erythematous lesions expanded to 10 × 10 cm, showing granulation with drainage and strong spontaneous pain. At this point, he visited our hospital. He was diagnosed with kerion celsi due to Trichophyton tonsurans by fungal examination. The patient was treated with terbinafine (125 mg/day) for 6 weeks, and a brush test at 6 weeks was negative. All 18 members of the judo club, including this patient, were investigated; brush tests were positive in 4 cases, and one was positive for tinea corporis alone. The patient's family members parents were both negative. When an athlete is diagnosed with ringworm, T. tonsurans infection should be considered, and testing and treatment of family members and fellow athletes should be carried out to prevent the spread of infection.


Tinea Capitis , Male , Humans , Adolescent , Tinea Capitis/diagnosis , Tinea Capitis/drug therapy , Terbinafine , Athletes , Drainage
5.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article En | MEDLINE | ID: mdl-36982275

The antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) exhibits antimicrobial activities and immunomodulatory functions in keratinocytes and fibroblasts. However, its role in regulating skin barrier function remains unclear. Here, we investigated the effects of AMP-IBP5 on the skin barrier and its role in the pathogenesis of atopic dermatitis (AD). 2,4-Dinitrochlorobenzene was used to induce AD-like skin inflammation. Transepithelial electrical resistance and permeability assays were used to investigate tight junction (TJ) barrier function in normal human epidermal keratinocytes and mice. AMP-IBP5 increased the expression of TJ-related proteins and their distribution along the intercellular borders. AMP-IBP5 also improved TJ barrier function through activation of the atypical protein kinase C and Rac1 pathways. In AD mice, AMP-IBP5 ameliorated dermatitis-like symptoms restored the expression of TJ-related proteins, suppressed the expression of inflammatory and pruritic cytokines, and improved skin barrier function. Interestingly, the ability of AMP-IBP5 to alleviate inflammation and improve skin barrier function in AD mice was abolished in mice treated with an antagonist of the low-density lipoprotein receptor-related protein-1 (LRP1) receptor. Collectively, these findings indicate that AMP-IBP5 may ameliorate AD-like inflammation and enhance skin barrier function through LRP1, suggesting a possible role for AMP-IBP5 in the treatment of AD.


Dermatitis, Atopic , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Antimicrobial Peptides , Keratinocytes/metabolism , Inflammation/metabolism , Cytokines/metabolism , Disease Models, Animal , Lipoproteins, LDL/metabolism , Skin/metabolism
6.
J Invest Dermatol ; 143(5): 751-761.e7, 2023 05.
Article En | MEDLINE | ID: mdl-36455652

Human cathelicidin LL-37 is a multifunctional antimicrobial peptide that exhibits antimicrobial and immunomodulatory activities. LL-37 regulates skin barrier function and was recently reported to activate autophagy in macrophages. Because autophagy deficiency is associated with skin diseases characterized by a dysfunctional epidermal barrier, we hypothesized that LL-37 might regulate the skin barrier through autophagy modulation. We showed that LL-37 activated autophagy in human keratinocytes and three-dimensional skin equivalent models as indicated by increases in LC3 puncta formation, decreases in p62, and autophagosome and autolysosome formation. LL-37‒induced autophagy was suppressed by P2X7 receptor, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 inhibitors, suggesting that the P2X7, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 pathways are involved. Moreover, LL-37 enhanced the phosphorylation of adenosine monophosphate‒activated protein kinase and unc-51-like kinase 1. In addition, LL-37‒mediated autophagy involves the mechanistic target of rapamycin and MAPK pathways. Interestingly, the LL-37‒induced distribution of tight junction proteins and improvement in the tight junction barrier were inhibited in autophagy-deficient keratinocytes and keratinocytes and skin models treated with autophagy inhibitors, indicating that the LL-37‒mediated tight junction barrier is associated with autophagy activation. Collectively, these findings suggest that LL-37 is a potential therapeutic target for skin diseases characterized by dysfunctional autophagy and skin barriers.


Antimicrobial Cationic Peptides , Cathelicidins , Humans , Adenosine Monophosphate/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Cathelicidins/pharmacology , Cathelicidins/metabolism , Keratinocytes/metabolism , Sirolimus , Signal Transduction
7.
J Clin Invest ; 132(17)2022 09 01.
Article En | MEDLINE | ID: mdl-35834333

Human ß-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4- and IL-13-mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3-mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3-mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.


Dermatitis, Atopic , beta-Defensins , Animals , Autophagy , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Keratinocytes/pathology , Mice , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , beta-Defensins/genetics , beta-Defensins/metabolism , beta-Defensins/therapeutic use
8.
Wound Repair Regen ; 30(2): 232-244, 2022 03.
Article En | MEDLINE | ID: mdl-35092133

Impaired keratinocyte functions are major factors that are responsible for delayed diabetic wound healing. In addition to its antimicrobial activity, the antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) activates mast cells and promotes keratinocyte and fibroblast proliferation and migration. However, its effects on diabetic wound healing remain unclear. Human keratinocytes were cultured in normal or high glucose milieus. The production of angiogenic growth factor and cell proliferation and migration were evaluated. Wounds in normal and streptozotocin-induced diabetic mice were monitored and histologically examined. We found that AMP-IBP5 rescued the high glucose-induced attenuation of proliferation and migration as well as the production of angiogenin and vascular endothelial growth factors in keratinocytes. The AMP-IBP5-induced activity was mediated by the epidermal growth factor receptor, signal transducer and activator of transcription 1 and 3, and mitogen-activated protein kinase pathways, as indicated by the inhibitory effects of pathway-specific inhibitors. In vivo, AMP-IBP5 markedly accelerated wound healing, increased the expression of angiogenic factors and promoted vessel formation in both normal and diabetic mice. Overall, the finding that AMP-IBP5 accelerated diabetic wound healing by protecting against glucotoxicity and promoting angiogenesis suggests that AMP-IBP5 might be a potential therapeutic target for treating chronic diabetic wounds.


Diabetes Mellitus, Experimental , Somatomedins , Animals , Mice , Antimicrobial Peptides , Cell Movement , Diabetes Mellitus, Experimental/metabolism , Glucose/pharmacology , Keratinocytes , Somatomedins/metabolism , Somatomedins/pharmacology , Wound Healing
9.
Front Immunol ; 12: 712781, 2021.
Article En | MEDLINE | ID: mdl-34594328

In addition to its antimicrobial activity, the skin-derived antimicrobial peptide human ß-defensin-3 (hBD-3) promotes keratinocyte proliferation and migration to initiate the wound healing process; however, its effects on fibroblasts, which are the major cell type responsible for wound healing, remain unclear. We investigated the role of hBD-3 in cell migration, proliferation and production of angiogenic growth factors in human fibroblasts and evaluated the in vivo effect of hBD-3 on promoting wound healing and angiogenesis. Following hBD-3 treatment, the mouse wounds healed faster and showed accumulation of neutrophils and macrophages in the early phase of wound healing and reduction of these phagocytes 4 days later. hBD-3-treated wounds also displayed an increased number of fibroblasts and newly formed vessels compared to those of the control mice. Furthermore, the expression of various angiogenic growth factors was increased in the hBD-3-treated wounds. Additionally, in vitro studies demonstrated that hBD-3 enhanced the secretion of angiogenic growth factors such as fibroblast growth factor, platelet-derived growth factor and vascular endothelial growth factor and induced the migration and proliferation of human fibroblasts. The hBD-3-mediated activation of fibroblasts involves the fibroblast growth factor receptor 1 (FGFR1)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways, as evidenced by the inhibitory effects of pathway-specific inhibitors. We indeed confirmed that hBD-3 enhanced the phosphorylation of FGFR1, JAK2 and STAT3. Collectively, the current study provides novel evidence that hBD-3 might be a potential candidate for the treatment of wounds through its ability to promote wound healing, angiogenesis and fibroblast activation.


Angiogenesis Inducing Agents/pharmacology , Antimicrobial Peptides/pharmacology , Cell Movement/drug effects , Signal Transduction/drug effects , Wound Healing/drug effects , beta-Defensins/pharmacology , Animals , Biomarkers , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Janus Kinase 2/metabolism , Matrix Metalloproteinase 2/metabolism , Mice , Models, Biological , Phosphorylation , Receptors, Fibroblast Growth Factor/metabolism , STAT3 Transcription Factor
...