Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 609(7928): 761-771, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071158

RESUMEN

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Asunto(s)
Tronco Encefálico , Conducta de Enfermedad , Neuronas , Animales , Anorexia/complicaciones , Área Postrema/citología , Área Postrema/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Conducta de Enfermedad/efectos de los fármacos , Letargia/complicaciones , Lipopolisacáridos/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/metabolismo
2.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673574

RESUMEN

Contrasting with the predicted anorexigenic effect of increasing brain serotonin signaling, long-term use of selective serotonin reuptake inhibitor (SSRI) antidepressants correlates with body weight (BW) gain. This adverse outcome increases the risk of transitioning to obesity and interferes with treatment compliance. Here, we show that orally administered fluoxetine (Flx), a widely prescribed SSRI, increased BW by enhancing food intake in healthy mice at 2 different time points and through 2 distinct mechanisms. Within hours, Flx decreased the activity of a subset of brainstem serotonergic neurons by triggering autoinhibitory signaling through 5-hydroxytryptamine receptor 1a (Htr1a). Following a longer treatment period, Flx blunted 5-hydroxytryptamine receptor 2c (Htr2c) expression and signaling, decreased the phosphorylation of cAMP response element-binding protein (CREB) and STAT3, and dampened the production of pro-opiomelanocortin (POMC, the precursor of α-melanocyte stimulating hormone [α-MSH]) in hypothalamic neurons, thereby increasing food intake. Accordingly, exogenous stimulation of the melanocortin 4 receptor (Mc4r) by cotreating mice with Flx and lipocalin 2, an anorexigenic hormone signaling through this receptor, normalized feeding and BW. Flx and other SSRIs also inhibited CREB and STAT3 phosphorylation in a human neuronal cell line, suggesting that these noncanonical effects could also occur in individuals treated long term with SSRIs. By defining the molecular basis of long-term SSRI-associated weight gain, we propose a therapeutic strategy to counter this effect.


Asunto(s)
Antidepresivos/efectos adversos , Fluoxetina/efectos adversos , Receptor de Melanocortina Tipo 4/metabolismo , Aumento de Peso/efectos de los fármacos , Animales , Antidepresivos/farmacología , Línea Celular , Fluoxetina/farmacología , Humanos , Ratones , Ratones Noqueados , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptor de Melanocortina Tipo 4/genética , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Factores de Tiempo , Aumento de Peso/genética
4.
Nature ; 583(7816): 441-446, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641826

RESUMEN

Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Intestinos/inervación , Neuronas/fisiología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Animales , Disbiosis/fisiopatología , Femenino , Ganglios Simpáticos/citología , Ganglios Simpáticos/fisiología , Motilidad Gastrointestinal , Vida Libre de Gérmenes , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Vías Nerviosas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcriptoma
5.
Eur J Immunol ; 50(3): 380-395, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31821534

RESUMEN

Secondary diversification of the Ig repertoire occurs through somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR)-three processes that are initiated by activation-induced cytidine deaminase (AID). AID targets Ig genes at orders of magnitude higher than the rest of the genome, but the basis for this specificity is poorly understood. We have previously demonstrated that enhancers and enhancer-like sequences from Ig genes are capable of stimulating SHM of neighboring genes in a capacity distinct from their roles in increasing transcription. Here, we use an in vitro proteomics approach to identify E-box, MEF2, Ets, and Ikaros transcription factor family members as potential binders of these enhancers. ChIP assays in the hypermutating Ramos B cell line confirmed that many of these factors bound the endogenous Igλ enhancer and/or the IgH intronic enhancer (Eµ) in vivo. Further investigation using SHM reporter assays identified binding sites for E2A and MEF2B in Eµ and demonstrated an association between loss of factor binding and decreases in the SHM stimulating activity of Eµ mutants. Our results provide novel insights into trans-acting factors that dictate SHM targeting and link their activity to specific DNA binding sites within Ig enhancers.


Asunto(s)
Hipermutación Somática de Inmunoglobulina/fisiología , Animales , Pollos , Genes de Inmunoglobulinas , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS One ; 8(10): e78880, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205337

RESUMEN

Alcohol-mediated cancers represent more than 3.5% of cancer-related deaths, yet how alcohol promotes cancer is a major open question. Using Drosophila, we identified novel interactions between dietary ethanol and loss of tumor suppressor components of the Hippo Pathway. The Hippo Pathway suppresses tumors in flies and mammals by inactivating transcriptional co-activator Yorkie, and the spectrum of cancers associated with impaired Hippo signaling overlaps strikingly with those associated with alcohol. Therefore, our findings may implicate loss of Hippo Pathway tumor suppression in alcohol-mediated cancers. Ethanol enhanced overgrowth from loss of the expanded, hippo, or warts tumor suppressors but, surprisingly, not from over-expressing the yorkie oncogene. We propose that in parallel to Yorkie-dependent overgrowth, impairing Hippo signaling in the presence of alcohol may promote overgrowth via additional alcohol-relevant targets. We also identified interactions between alcohol and Hippo Pathway over-activation. We propose that exceeding certain thresholds of alcohol exposure activates Hippo signaling to maintain proper growth control and prevent alcohol-mediated mis-patterning and tissue overgrowth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Etanol/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Fenotipo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA