Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 13(1): 1990827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34747326

RESUMEN

Intestinal epithelium represents a dynamic and diverse cellular system that continuously interacts with gut commensals and external cues. Intestinal stem cells, which lie at the heart of epithelial renewal and turnover, proliferate to maintain a steady stem cell population and differentiate to form functional epithelial cell types. This rather sophisticated assembly-line is maintained by an elaborate micro-environment, sculpted by a myriad of host and gut microbiota-derived signals, forming an intestinal stem cell niche. This complex, yet crucial signaling niche undergoes dynamic changes during homeostasis and chronic intestinal inflammation. Inflammatory bowel disease refers to a chronic inflammatory response toward pathogenic or commensal microbiota, in a genetically susceptible host. Compositional and functional alterations in gut microbiota are pathognomonic of IBD.The present review highlights the modulatory role of gut microbiota on the intestinal stem cell niche during homeostasis and inflammatory bowel disease. We discuss the mechanisms of direct action of gut commensals (through microbiota-derived or microbiota-influenced metabolites) on ISCs, followed by their effects via other epithelial and immune cell types.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/citología , Nicho de Células Madre , Animales , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/microbiología , Células Madre/citología , Células Madre/metabolismo
2.
ISME J ; 14(3): 879, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31748709

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Cell Host Microbe ; 22(6): 733-745.e5, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29241040

RESUMEN

Interactions between the host and its microbiota are of mutual benefit and promote health. Complex molecular pathways underlie this dialog, but the identity of microbe-derived molecules that mediate the mutualistic state remains elusive. Helicobacter hepaticus is a member of the mouse intestinal microbiota that is tolerated by the host. In the absence of an intact IL-10 signaling, H. hepaticus induces an IL-23-driven inflammatory response in the intestine. Here we investigate the interactions between H. hepaticus and host immune cells that may promote mutualism, and the microbe-derived molecule(s) involved. Our results show that H. hepaticus triggers early IL-10 induction in intestinal macrophages and produces a large soluble polysaccharide that activates a specific MSK/CREB-dependent anti-inflammatory and repair gene signature via the receptor TLR2. These data identify a host-bacterial interaction that promotes mutualistic mechanisms at the intestinal interface. Further understanding of this pathway may provide novel prevention and treatment strategies for inflammatory bowel disease.


Asunto(s)
Helicobacter hepaticus/inmunología , Helicobacter hepaticus/metabolismo , Inmunosupresores/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Polisacáridos Bacterianos/metabolismo , Simbiosis , Animales , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Ratones , Receptor Toll-Like 2/metabolismo
4.
ISME J ; 10(10): 2389-404, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27003245

RESUMEN

The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes.


Asunto(s)
Bacterias/genética , Colitis/genética , Colitis/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Colitis/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Metagenómica , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...