Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 77: 188-198, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054966

RESUMEN

Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed 13C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291. While C. acetobutylicum 824 (pCD07239) could not grow autotrophically, in heterotrophic fermentation, it began producing butanol at the early growth phase (OD600 of 0.80; 0.162 g/L butanol). In contrast, solvent production in the parent strain did not begin until the early stationary phase (OD600 of 7.40). This study offers valuable insights for future research on biobutanol production during the early growth phase.


Asunto(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Solventes , Madera , Fermentación , Butanoles/metabolismo
2.
Front Bioeng Biotechnol ; 9: 754250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760879

RESUMEN

ATPase, a key enzyme involved in energy metabolism, has not yet been well studied in Clostridium acetobutylicum. Here, we knocked down the atpG gene encoding the ATPase gamma subunit in C. acetobutylicum ATCC 824 using a mobile group II intron system and analyzed the physiological characteristics of the atpG gene knockdown mutant, 824-2866KD. Properties investigated included cell growth, glucose consumption, production of major metabolites, and extracellular pH. Interestingly, in 2-L batch fermentations, 824-2866KD showed no significant difference in metabolite biosynthesis or cell growth compared with the parent ATCC 824. However, the pH value in 824-2866KD cultures at the late stage of the solventogenic phase was abnormally high (pH 6.12), compared with that obtained routinely in the culture of ATCC 824 (pH 5.74). This phenomenon was also observed in batch cultures of another C. acetobutylicum, BEKW-2866KD, an atpG-knockdown and pta-buk double-knockout mutant. The findings reported in this study suggested that ATPase is relatively minor than acid-forming pathway in ATP metabolism in C. acetobutylicum.

3.
Biotechnol Bioeng ; 117(7): 2187-2197, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32281652

RESUMEN

Poly(d-lactate-co-glycolate-co-4-hydroxybutyrate) [poly(d-LA-co-GA-co-4HB)] and poly(d-lactate-co-glycolate-co-4-hydroxybutyrate-co-d-2-hydroxybutyrate) [poly(d-LA-co-GA-co-4HB-co-d-2HB)] are of interest for their potential applications as new biomedical polymers. Here we report their enhanced production by metabolically engineered Escherichia coli. To examine the polymer properties, poly(d-LA-co-GA-co-4HB) polymers having various monomer compositions (3.4-41.0mol% of 4HB) were produced by culturing the engineered E. coli strain expressing xylBC from Caulobacter crescentus, evolved phaC1 from Pseudomonas sp. MBEL 6-19 (phaC1437), and evolved pct from Clostridium propionicum (pct540) in a medium supplemented with sodium 4HB at various concentrations. To produce these polymers without 4HB feeding, the 4HB biosynthetic pathway was additionally constructed by expressing Clostridium kluyveri sucD and 4hbD. The engineered E. coli expressing xylBC, phaC1437, pct540, sucD, and 4hbD successfully produced poly(d-LA-co-GA-co-4HB-co-d-2HB) and poly(d-LA-co-GA-co-4HB) from glucose and xylose. Through modulating the expression levels of the heterologous genes and performing fed-batch cultures, the polymer content and titer could be increased to 65.76wt% and 6.19g/L, respectively, while the monomer fractions in the polymers could be altered as desired. The polymers produced, in particular, the 4HB-rich polymers showed viscous and sticky properties suggesting that they might be used as medical adhesives.


Asunto(s)
Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Ingeniería Metabólica/métodos , Poliésteres/metabolismo , Ácido Poliglicólico/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Escherichia coli/genética , Pseudomonas/genética , Pseudomonas/metabolismo
4.
Appl Microbiol Biotechnol ; 98(11): 5105-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24743985

RESUMEN

The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C. acetobutylicum strains, ATCC 824, the non-solventogenic strain, M5 that has lost the solventogenic megaplasmid pSOL1, and the synthetic simplified alcohol forming strain, M5 (pIMP1E1AB) expressing plasmid-based CoA-transferase (CtfAB) and aldehyde/alcohol dehydrogenase (AdhE1). A total of 68 protein spots, corresponding to 56 unique proteins, were unambiguously identified as being differentially present after the phase transitions in the three C. acetobutylicum strains. In addition to changes in proteins known to be involved in solventogenesis (AdhE1 and CtfB), we identified significant alterations in enzymes involved in sugar transport and metabolism, fermentative pathway, heat shock proteins, translation, and amino acid biosynthesis upon entry into the stationary phase. Of these, four increased proteins (AdhE1, CAC0233, CtfB and phosphocarrier protein HPr) and six decreased proteins (butyrate kinase, ferredoxin:pyruvate oxidoreductase, phenylalanyl-tRNA synthetase, adenylosuccinate synthase, pyruvate kinase and valyl-tRNA synthetase) showed similar patterns in the two strains capable of butanol formation. Interestingly, significant changes of several proteins by post-translational modifications were observed in the solventogenic phase. The proteomic data from this study will improve our understanding on how cell physiology is affected through protein levels patterns in clostridia.


Asunto(s)
Ácido Acético/metabolismo , Proteínas Bacterianas/análisis , Butanoles/metabolismo , Clostridium acetobutylicum/química , Clostridium acetobutylicum/metabolismo , Proteoma/análisis , Clostridium acetobutylicum/crecimiento & desarrollo
5.
Metab Eng ; 23: 165-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24704310

RESUMEN

A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium acetobutylicum , Ingeniería Metabólica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crecimiento & desarrollo , Fermentación/genética
6.
Appl Microbiol Biotechnol ; 97(21): 9355-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013291

RESUMEN

Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Ingeniería Metabólica , Clostridium tyrobutyricum/metabolismo , Etanol/metabolismo , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética
7.
Biotechnol Prog ; 29(4): 1083-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23606675

RESUMEN

Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production.


Asunto(s)
2-Propanol/metabolismo , Biocombustibles , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Ingeniería Metabólica
8.
mBio ; 3(5)2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23093384

RESUMEN

Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1(D485G) gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD(**)) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. IMPORTANCE Renewable biofuel is one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, strain improvement has been rather slow. Furthermore, complex metabolic characteristics of acidogenesis followed by solventogenesis in this strain have hampered development of engineered clostridia having highly efficient and selective butanol production capability. Here we report for the first time the results of systems metabolic engineering studies of two butanol-forming routes and their relative importances in butanol production. Based on these findings, a metabolically engineered Clostridium acetobutylicum strain capable of producing butanol to a high titer with high yield and selectivity could be developed by reinforcing the direct butanol-forming flux.


Asunto(s)
Proteínas Bacterianas/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Proteínas Bacterianas/genética , Clostridium acetobutylicum/genética
9.
Appl Environ Microbiol ; 78(5): 1416-23, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210214

RESUMEN

Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.


Asunto(s)
2-Propanol/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Ingeniería Metabólica , Acetona/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Biocombustibles , Clostridium acetobutylicum/enzimología , Clostridium beijerinckii/enzimología , Clostridium beijerinckii/genética , Fermentación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA