Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693448

RESUMEN

Homochirality is an important feature in biological systems and occurs even in inorganic nanoparticles. However, the mechanism of chirality formation and the key steps during growth are not fully understood. Here we identify two distinguishable pathways from achiral to chiral morphologies in gold nanoparticles by training an artificial neural network of cellular automata according to experimental results. We find that the chirality is initially determined by the nature of the asymmetric growth along the boundaries of enantiomeric high-index planes. The deep learning-based interpretation of chiral morphogenesis provides a theoretical understanding but also allows us to predict an unprecedented crossover pathway and the resulting morphology.

2.
Nano Lett ; 24(15): 4528-4536, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573311

RESUMEN

Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.

3.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047734

RESUMEN

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

4.
Nat Commun ; 14(1): 3615, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330546

RESUMEN

Identifying the three-dimensional (3D) crystal plane and strain-field distributions of nanocrystals is essential for optical, catalytic, and electronic applications. However, it remains a challenge to image concave surfaces of nanoparticles. Here, we develop a methodology for visualizing the 3D information of chiral gold nanoparticles ≈ 200 nm in size with concave gap structures by Bragg coherent X-ray diffraction imaging. The distribution of the high-Miller-index planes constituting the concave chiral gap is precisely determined. The highly strained region adjacent to the chiral gaps is resolved, which was correlated to the 432-symmetric morphology of the nanoparticles and its corresponding plasmonic properties are numerically predicted from the atomically defined structures. This approach can serve as a comprehensive characterization platform for visualizing the 3D crystallographic and strain distributions of nanoparticles with a few hundred nanometers, especially for applications where structural complexity and local heterogeneity are major determinants, as exemplified in plasmonics.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Difracción de Rayos X , Catálisis
5.
ACS Nano ; 17(3): 2306-2317, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36648062

RESUMEN

Quantitative analysis of chiral molecules in various solvents is essential. However, there are still many challenges to enhancing the sensitivity in precisely determining both concentration and chirality. Here, we built an algorithmic methodology to predict and optimally design the chiroptical response of chiral plasmonic sensors for a specific target chiral analyte with the aid of deep learning. Based upon the analytic and intuitive understanding of the Born-Kuhn type plasmonic nanodimer, we designed and trained the neural networks that can successfully predict the chiroptical properties and further inversely design the plasmonic structure to achieve the intended circular dichroism. The developed algorithm could identify the optimum structure exhibiting the maximum sensitivity for the given specific analytes. Surprisingly, we discovered that sensitivity strongly depends on the various conditions of analytes and can be finely tuned with the structural parameters of plasmonic nanodimers. We envision that this study can provide a general platform to develop ultrasensitive chiral plasmonic sensors whose structure and sensitivity have been evolved algorithmically for adoption in specific applications.

6.
Nature ; 612(7940): 470-476, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517715

RESUMEN

Quantitative determination and in situ monitoring of molecular chirality at extremely low concentrations is still challenging with simple optics because of the molecular-scale mismatch with the incident light wavelength. Advances in spectroscopy1-4 and nanophotonics have successfully lowered the detection limit in enantioselective sensing, as it can bring the microscopic chiral characteristics of molecules into the macroscopic scale5-7 or squeeze the chiral light into the subwavelength scale8-17. Conventional nanophotonic approaches depend mainly on the optical helicity density8,9 by localized resonances within an individual structure, such as localized surface plasmon resonances (LSPRs)10-16 or dielectric Mie resonances17. These approaches use the local chiral hotspots in the immediate vicinity of the structure, whereas the handedness of these hotspots varies spatially. As such, these localized resonance modes tend to be error-prone to the stochasticity of the target molecular orientations, vibrations and local concentrations18,19. Here we identified enantioselective characteristics of collective resonances (CRs)20 arising from assembled 2D crystals of isotropic, 432-symmetric chiral gold nanoparticles (helicoids)21,22. The CRs exhibit a strong and uniform chiral near field over a large volume above the 2D crystal plane, resulting from the collectively spinning, optically induced dipoles at each helicoid. Thus, energy redistribution by molecular back action on the chiral near field shifts the CRs in opposite directions, depending on the handedness of the analyte, maximizing the modulation of the collective circular dichroism (CD).

7.
J Phys Chem Lett ; 13(35): 8344-8351, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040951

RESUMEN

Precise control over the morphology and facets of Pd nanomaterials has great importance in catalytic and sensing applications. In this study, we synthesized Pd nanoparticles with multiple types of low-Miller-index-faceted morphologies by systematically defining the synthesis conditions of the seed-mediated colloidal preparation method. We discovered the morphological evolution of Pd nanoparticles by following the trajectory of the surface Miller indices, which were determined by the cooperative effects of cetyltrimethylammonium bromide and ascorbic acid. By precise control of the morphological trajectory, Pd nanoparticles with a new cuborhombicube morphology, composed of 36 facets and concave edges, were discovered. This study provides important insight into the design of the surface Miller indices and morphologies of functional nanomaterials.


Asunto(s)
Nanopartículas del Metal , Paladio , Catálisis , Cetrimonio
8.
Nat Commun ; 13(1): 3831, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780141

RESUMEN

Precise control of morphology and optical response of 3-dimensional chiral nanoparticles remain as a significant challenge. This work demonstrates chiral gold nanoparticle synthesis using single-stranded oligonucleotide as a chiral shape modifier. The homo-oligonucleotide composed of Adenine nucleobase specifically show a distinct chirality development with a dissymmetric factor up to g ~ 0.04 at visible wavelength, whereas other nucleobases show no development of chirality. The synthesized nanoparticle shows a counter-clockwise rotation of generated chiral arms with approximately 200 nm edge length. The molecular dynamics and density functional theory simulations reveal that Adenine shows the highest enantioselective interaction with Au(321)R/S facet in terms of binding orientation and affinity. This is attributed to the formation of sequence-specific intra-strand hydrogen bonding between nucleobases. We also found that different sequence programming of Adenine-and Cytosine-based oligomers result in chiral gold nanoparticles' morphological and optical change. These results extend our understanding of the biomolecule-directed synthesis of chiral gold nanoparticles to sequence programmable deoxyribonucleic acid and provides a foundation for programmable synthesis of chiral gold nanoparticles.


Asunto(s)
Oro , Nanopartículas del Metal , Adenina , Oro/química , Nanopartículas del Metal/química , Oligonucleótidos
9.
Angew Chem Int Ed Engl ; 60(40): 21943-21951, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34324785

RESUMEN

In manufacturing C-N bond-containing compounds, it is an important challenge to alternate the conventional methodologies that utilize reactive substrates, toxic reagents, and organic solvents. In this study, we developed an electrochemical method to synthesize a C-N bond-containing molecule avoiding the use of cyanides and amines by harnessing nitrate (NO3- ) as a nitrogen source in an aqueous electrolyte. In addition, we utilized oxalic acid as a carbon source, which can be obtained from electrochemical conversion of CO2. Thus, our approach can provide a route for the utilization of anthropogenic CO2 and nitrate wastes, which cause serious environmental problems including global warming and eutrophication. Interestingly, the coreduction of oxalic acid and nitrate generated reactive intermediates, which led to C-N bond formation followed by further reduction to an amino acid, namely, glycine. By carefully controlling this multireduction process with a fabricated Cu-Hg electrode, we demonstrated the efficient production of glycine with a faradaic efficiency (F.E.) of up to 43.1 % at -1.4 V vs. Ag/AgCl (current density≈90 mA cm-2 ).

10.
ACS Nano ; 15(1): 979-988, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33332089

RESUMEN

Chiral inorganic nanomaterials have revealed opportunities in various fields owing to their strong light-matter interactions. In particular, chiral metal oxide nanomaterials that can control light and biochemical reactions have been highlighted due to their catalytic activity and biocompatibility. In this study, we present the synthesis of chiral cobalt oxide nanoparticles with a g-factor of 0.01 in the UV-visible region using l- and d-Tyr-Tyr-Cys ligands. The conformation of the Tyr-Tyr-Cys peptide on the nanoparticle surfaces was identified by 2D NMR spectroscopy analysis. In addition, the sequence effect of Tyr-Tyr-Cys developing chiral nanoparticles was analyzed. The revealed peptide structure, along with the experimental results, demonstrate the important role of the thiol group and carboxyl group of the Tyr-Tyr-Cys ligand in chirality evolution. Importantly, due to the magnetic properties of chiral cobalt oxide nanoparticles and their strong absorption in the UV region, the circular dichroism (CD) responses can be dramatically modulated under an external magnetic field.


Asunto(s)
Nanopartículas , Cobalto , Conformación Molecular , Óxidos , Péptidos
11.
Small ; 16(25): e2000955, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32468643

RESUMEN

The electrochemical reduction of carbon dioxide (CO2 ) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.

12.
Angew Chem Int Ed Engl ; 59(31): 12976-12983, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32337812

RESUMEN

Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light-matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ-Glu-Cys and Cys-Gly and analyzed crystallographically. The γ-Glu-Cys-directed NPs present a cube-like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys-Gly exhibited a rhombic dodecahedron-like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ-Glu-Cys generated an intermediate concave hexoctahedron morphology, while Cys-Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys-Gly are named 432 helicoid V because of their unique morphology and growth pathway.

13.
ACS Nano ; 14(3): 3595-3602, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32134639

RESUMEN

Synthesis of chiral plasmonic materials has been highlighted for the last decades with their optical properties and versatile potential applications. Recently reported aqueous-based amino acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles with 432 point-group symmetry shows exceptionally high chiroptic response within 100 nm scales. Despite its already excellent chiroptic response, a single-nanoparticle dark field scattering study revealed that full chiroptic potential of chiral gold nanoparticle is limited with its overall synthetic uniformity. Based on this knowledge, we present a multi-chirality-evolution step synthesis method for the enhancement of chiroptic response through an increase in particle uniformity. Detailed time variant study and interrelationship study of reaction parameters allowed the systematic construction of design principles for chiral nanoparticles with exceptional chiroptic response. With the application of precisely controlled growth kinetic to two distinct growth regimes, modified chiral gold nanoparticles showed significantly improved uniformity, achieving an improved dissymmetry factor of g = 0.31. We expect that our strategy will aid in precise morphology and property control for chiral nanomaterials, which can be used in various plasmonic metamaterial applications.

14.
Nat Commun ; 11(1): 263, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937767

RESUMEN

Chiral plasmonic nanostructures have opened up unprecedented opportunities in optical applications. We present chirality evolution in nanoparticles focusing on the crystallographic aspects and elucidate key parameters for chiral structure formation. From a detailed understanding of chirality formation, we achieved a morphology (432 Helicoid IV) of three-dimensionally controlled chiral plasmonic nanoparticles based on the rhombic dodecahedral shape. The role of the synthesis parameters, seed, cysteine, cetyltrimethylammonium bromide and ascorbic acid on chiral formation are studied, and based on this understanding, the systematic control of the chiral structure is presented. The relation between the modulated chiral structure factors and optical response is further elucidated by electromagnetic simulation. Importantly, a new optical response is achieved by assembling chiral nanoparticles into a film. This comprehensive study of chiral nanoparticles will provide valuable insight for the further development of diverse chiral plasmonic nanostructures with fascinating properties.

15.
Photosynth Res ; 143(2): 205-220, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31643017

RESUMEN

The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Fotosíntesis/efectos de la radiación
16.
Nanoscale ; 12(1): 58-66, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31815994

RESUMEN

Plasmonic metamaterials are artificially designed materials which exhibit optical properties that cannot be found in nature. They have unique and special abilities related to electromagnetic wave control, including strong field enhancement in the vicinity of the surfaces. Over the years, scientists have succeeded in dramatically improving the detection limit of molecular chirality utilizing a variety of plasmonic metamaterial platforms. In this mini-review, we will discuss the principles of most recent issues in chiral sensing applications of plasmonic metamaterials, including suggested formulas for signal enhancement of chiroptical plasmonic sensors, and studies on various platforms that employ different sensing mechanisms.

17.
Adv Mater ; 32(41): e1905758, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31834668

RESUMEN

Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.

18.
Adv Mater ; 30(42): e1704717, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29363204

RESUMEN

While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO2 conversion and, ultimately, achieve a carbon-neutral cycle.

19.
J Phys Chem Lett ; 8(2): 538-545, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28071909

RESUMEN

Electrocatalytic conversion of CO2 into a long-chain hydrocarbon represents an important research direction in adding value to CO2-based chemicals and realizing its practical application. Long-chain hydrocarbons may change the current fossil fuel-based industry in that those chemicals have a similar energy density as gasoline, high compatibility with the current infrastructure, and low hydroscopicity for pipeline distribution. However, most of the electrocatalysts produce C1, C2, and C3 chemicals, and methods for producing long-chain hydrocarbons are not available thus far. Interestingly, nature utilizes many enzymes to generate long-chain hydrocarbons using C2 building blocks and suggests key mechanisms, inspiring new perspective in the design of electrocatalysts. In this Perspective, we present case studies to demonstrate how CO2 and its reductive derivatives interact with the electrode surface during C-C bond formation and introduce how these issues are addressed in biological systems. We end this Perspective by outlining possible strategies to translate the natural mechanism into a heterogeneous electrode.

20.
Nano Converg ; 3(1): 19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28191429

RESUMEN

Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...