Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 10(3): 678-691, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940764

RESUMEN

Despite the essential roles of natural killer (NK) cells in cancer treatment, the physical barrier and biological cues of the tumor microenvironment (TME) may induce NK cell dysfunction, causing their poor infiltration into tumors. The currently available two-dimensional (2D) cancer-NK co-culture systems hardly represent the characteristics of TME and are not suitable for tracking the infiltration of immune cells and assessing the efficacy of immunotherapy. This study aims to monitor NK-mediated cancer cell killing using a polymer thin film-based, 3D assay platform that contains highly tumorigenic cancer spheroids. A poly(cyclohexyl methacrylate) (pCHMA)-coated surface enables the generation of tumorigenic spheroids from pancreatic cancer patient-derived cancer cells, showing considerable amounts of extracellular matrix (ECM) proteins and cancer stem cell (CSC)-like characteristics. The 3D spheroid-based assay platform allows rapid discovery of a therapeutic agent for synergistic NK-mediated cytotoxicity through imaging-based high-content screening. In detail, the small molecule C19, known as a multi-epithelial-mesenchymal transition pathway inhibitor, is shown to enhance NK activation and infiltration via modulation of the ECM, resulting in synergistic cytotoxicity against cancer spheroids. This 3D biomimetic co-culture assay platform provides promising applications for predicting patient-specific responses to immunotherapy through advanced therapeutic combinations involving a chemical drug and immune cells.


Asunto(s)
Neoplasias , Microambiente Tumoral , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Inmunoterapia , Células Asesinas Naturales , Neoplasias/tratamiento farmacológico
2.
Cancer Res ; 78(24): 6890-6902, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30352813

RESUMEN

: Although cancer stem cells (CSC) are thought to be responsible for tumor recurrence and resistance to chemotherapy, CSC-related research and drug development have been hampered by the limited supply of diverse, patient-derived CSC. Here, we present a functional polymer thin film (PTF) platform that promotes conversion of cancer cells to highly tumorigenic three-dimensional (3D) spheroids without the use of biochemical or genetic manipulations. Culturing various human cancer cells on the specific PTF, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) (pV4D4), gave rise to numerous multicellular tumor spheroids within 24 hours with high efficiency and reproducibility. Cancer cells in the resulting spheroids showed a significant increase in the expression of CSC-associated genes and acquired increased drug resistance compared with two-dimensional monolayer-cultured controls. These spheroids also exhibited enhanced xenograft tumor-forming ability and metastatic capacity in nude mice. By enabling the generation of tumorigenic spheroids from diverse cancer cells, the surface platform described here harbors the potential to contribute to CSC-related basic research and drug development. SIGNIFICANCE: A new cell culture technology enables highly tumorigenic 3D spheroids to be easily generated from various cancer cell sources in the common laboratory.


Asunto(s)
Células Madre Neoplásicas/citología , Polímeros/química , Esferoides Celulares/citología , Animales , Carcinogénesis/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Genoma , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...