Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 80(12): 384, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872440

RESUMEN

The obligate biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals, which results in large crop losses. Control of B. graminis in barley is mainly achieved by fungicide treatment and by breeding resistant varieties. Vampyrellid amoebae, just like mycophagous protists, are able to consume a variety of fungi. To reveal the impact of some selected fungus-consuming protists on Blumeria graminis f. sp. hordei (Bgh), and to evaluate the possibility of using these protists as biological agents in the future, their feeding behaviour on B. graminis spores on barley leaves was investigated. An experiment was carried out with five different protist isolates (Leptophrys vorax, Platyreta germanica, Theratromyxa weberi U 11, Theratromyxa weberi G7.2 and Acanthamoeba castellanii) and four matched controls, including the food sources of the cultures and the medium. Ten-day-old leaves of barley (Hordeum vulgare cv. Golden Promise) were first inoculated with Blumeria graminis (f. sp. hordei race A6) spores, then treated with protists and fungal colonies on the leaf surfaces were counted under the microscope after 5 days. The isolates L. vorax, P. germanica, and T. weberi U11 did not show a significant reduction in the number of powdery mildew colonies whereas the isolates T. weberi G7.2 and A. castellanii significantly reduced the number of powdery mildew colonies on the leaf surfaces compared to their respective controls. This indicates that these two isolates are capable of reducing B. graminis colonies on barley leaves and are suitable candidates for further investigation for possible use as biological agents. Nevertheless, the susceptibility to dryness and the cell division rate should be considered during the optimisation of the next steps like application procedure and whole plant treatment.


Asunto(s)
Ascomicetos , Hordeum , Hordeum/microbiología , Hojas de la Planta/microbiología , Factores Biológicos , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
2.
BMC Plant Biol ; 23(1): 460, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37789272

RESUMEN

BACKGROUND: In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS: This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS: Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.


Asunto(s)
Hordeum , Hordeum/genética , Hordeum/microbiología , Pseudomonas , Endófitos/fisiología , Bacterias , Hierro/metabolismo , Suelo , Raíces de Plantas/microbiología
3.
iScience ; 26(9): 107565, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664630

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.

4.
J Exp Bot ; 74(10): 3033-3046, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36905226

RESUMEN

Defense responses in plants are based on complex biochemical processes. Systemic acquired resistance (SAR) helps to fight infections by (hemi-)biotrophic pathogens. One important signaling molecule in SAR is pipecolic acid (Pip), accumulation of which is dependent on the aminotransferase ALD1 in Arabidopsis. While exogenous Pip primes defense responses in the monocotyledonous cereal crop barley (Hordeum vulgare), it is currently unclear if endogenous Pip plays a role in disease resistance in monocots. Here, we generated barley ald1 mutants using CRISPR/Cas9, and assessed their capacity to mount SAR. Endogenous Pip levels were reduced after infection of the ald1 mutant, and this altered systemic defense against the fungus Blumeria graminis f. sp. hordei. Furthermore, Hvald1 plants did not emit nonanal, one of the key volatile compounds that are normally emitted by barley plants after the activation of SAR. This resulted in the inability of neighboring plants to perceive and/or respond to airborne cues and prepare for an upcoming infection, although HvALD1 was not required in the receiver plants to mediate the response. Our results highlight the crucial role of endogenous HvALD1 and Pip for SAR, and associate Pip, in particular together with nonanal, with plant-to-plant defense propagation in the monocot crop barley.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Hordeum/genética , Hordeum/microbiología , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología
5.
BMC Plant Biol ; 22(1): 447, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36114461

RESUMEN

BACKGROUND: Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS: In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION: This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/genética , Calcio/metabolismo , Flagelina/metabolismo , Flagelina/farmacología , Hordeum/metabolismo , Peróxido de Hidrógeno/metabolismo , Manitol/metabolismo , Manitol/farmacología , Plantas/metabolismo , Cloruro de Sodio/farmacología
6.
Plant Biotechnol J ; 20(1): 89-102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487614

RESUMEN

The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9-mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium-mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9-induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo-/heteromers with other HvMORCs and interact with components of the RNA-directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.


Asunto(s)
Hordeum , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Hordeum/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446550

RESUMEN

The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain-containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereals.


Asunto(s)
Gravitropismo , Hordeum/fisiología , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Motivo alfa Estéril , Triticum/fisiología , Pared Celular/metabolismo , Secuencia Conservada , Evolución Molecular , Técnicas de Inactivación de Genes , Genes de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Triticum/crecimiento & desarrollo
9.
Environ Microbiol ; 23(4): 2102-2115, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314556

RESUMEN

Non-expressor of pathogenesis-related genes 1 (NPR1) is a key regulator of plant innate immunity and systemic disease resistance. The model for NPR1 function is based on experimental evidence obtained largely from dicots; however, this model does not fit all aspects of Poaceae family, which includes major crops such as wheat, rice and barley. In addition, there is little scientific data on NPR1's role in mutualistic symbioses. We assessed barley (Hordeum vulgare) HvNPR1 requirement during the establishment of mutualistic symbiosis between barley and beneficial Alphaproteobacterium Rhizobium radiobacter F4 (RrF4). Upon RrF4 root-inoculation, barley NPR1-knockdown (KD-hvnpr1) plants lost the typical spatiotemporal colonization pattern and supported less bacterial multiplication. Following RrF4 colonization, expression of salicylic acid marker genes were strongly enhanced in wild-type roots; whereas in comparison, KD-hvnpr1 roots exhibited little to no induction. Both basal and RrF4-induced root-initiated systemic resistance against virulent Blumeria graminis were impaired in leaves of KD-hvnpr1. Besides these immune-related differences, KD-hvnpr1 plants displayed higher root and shoot biomass than WT. However, RrF4-mediated growth promotion was largely compromised in KD-hvnpr1. Our results demonstrate a critical role for HvNPR1 in establishing a mutualistic symbiosis between a beneficial bacterium and a cereal crop.


Asunto(s)
Basidiomycota , Hordeum , Rhizobium , Agrobacterium tumefaciens , Ascomicetos , Raíces de Plantas , Simbiosis
10.
Methods Mol Biol ; 2166: 227-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710412

RESUMEN

Double-stranded RNA (dsRNA) plays an essential role in many biological processes and has a great potential for agronomic applications in disease and pest control. A simple and effective method to monitor dsRNA uptake by fungi is crucial for the use of dsRNA as alternative fungicide. The protocol reported in this chapter describes an efficient method to detect and localize labeled dsRNA in fungal hyphae. We use the fungal Verticillium longisporum, a fungal plant pathogen that commonly infects rapeseed and other Brassica species, to explain the procedure, though we have validated the method in a broad spectrum of fungi. Hereafter we elucidate step-by-step the production, fluorescence labeling, as well as detection of dsRNA via fluorescence microscopy in fungal mycelium.


Asunto(s)
Hongos/metabolismo , Hifa/metabolismo , Microscopía Fluorescente/métodos , ARN Bicatenario/química , ARN Bicatenario/aislamiento & purificación , Antifúngicos , Ascomicetos/genética , Ascomicetos/metabolismo , Transporte Biológico/genética , Brassicaceae/microbiología , Simulación por Computador , Fluorescencia , Hongos/genética , Enfermedades de las Plantas/microbiología , Interferencia de ARN , ARN Interferente Pequeño/genética
11.
Methods Mol Biol ; 2124: 281-294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277460

RESUMEN

Biotechnological methods for targeted gene transfers into plants are key for successful breeding in the twenty-first century and thus essential for the survival of humanity. Two decades ago, genetic transformation of crop plants was not routine, and it was all but impossible with important cereals such as barley and wheat. The recent focus on crop plant genomics-yet based on the Arabidopsis toolbox-boosted the research for more efficient plant transformation protocols, thereby considerably widened the number of genetically tractable crops. Moreover, modern genome editing methods such as the CRISPR/Cas technique are game changers in plant breeding, though heavily dependent on technical optimization of plant transformation. Basically, there are two successful ways of introducing DNA into plant cells: one is making use of a living DNA vector, namely, microbes such as the soil bacterium Agrobacterium tumefaciens that infects plants and naturally transfers and subsequently integrates DNA into the plant genome. The other method uses a direct physical transfer of DNA by means of microinjection, microprojectile bombardment, or polymers such as polyethylene glycol. Both ways subsequently require sophisticated strategies for selecting and multiplying the transformed cells under tissue culture conditions to develop into a fully functional plant with the new desirable characteristics. Here we discuss practical and theoretical aspects of cereal crop plant transformation by Agrobacterium-mediated transformation and microparticle bombardment. Using immature embryos as explants, the efficiency of cereal transformation is compelling, reaching today up to 80% transformation efficiency.


Asunto(s)
Agrobacterium/genética , Grano Comestible/genética , Técnicas de Transferencia de Gen , Hordeum/genética , Transformación Genética , Triticum/genética , Agrobacterium tumefaciens/genética , Biolística , ADN de Plantas/genética , Vectores Genéticos/metabolismo , Glucuronidasa/metabolismo , Hordeum/embriología , Plantas Modificadas Genéticamente , Esterilización , Triticum/embriología
12.
Biotechnol Adv ; 39: 107463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31678220

RESUMEN

RNA interference (RNAi) is a biological process in which small RNA (sRNA) molecules sequence-specifically silence gene expression at the transcriptional or post-transcriptional level, either by directing inhibitory chromatin modifications or by decreasing the stability or translation potential of the targeted mRNA. The trigger for gene silencing is double-stranded RNA (dsRNA) generated from an endogenous genomic locus or a foreign source, such as a transgene or virus. The process of gene silencing can be exploited in agriculture to control plant diseases and pests. Of the pests that impact crop yield (including nematodes, arthropods, rodents, snails, slugs and birds), insects constitute the largest and most diverse group. Here, we review the "pros" and "cons" of using RNAi technology mediated by dsRNA-expressing transgenic plants (host-induced gene silencing, HIGS) or direct application of chemically synthesized dsRNA to control plant-damaging insects. Rapid progress in elucidating RNAi mechanisms has led to the first commercial products on the market. Given the high potential of RNAi strategies, their use in agriculture, horticulture, and forestry will likely be extensive in the future. However, further studies are needed to improve the efficacy of RNAi-based plant protection strategies and to assess their associated safety risks.


Asunto(s)
Control de Insectos , Animales , Insectos , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario
13.
Front Microbiol ; 10: 1662, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616385

RESUMEN

In filamentous fungi, gene silencing through RNA interference (RNAi) shapes many biological processes, including pathogenicity. We explored the requirement of key components of fungal RNAi machineries, including DICER-like 1 and 2 (FgDCL1, FgDCL2), ARGONAUTE 1 and 2 (FgAGO1, FgAGO2), AGO-interacting protein FgQIP (QDE2-interacting protein), RecQ helicase (FgQDE3), and four RNA-dependent RNA polymerases (FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4), in the ascomycete mycotoxin-producing fungal pathogen Fusarium graminearum (Fg) for sexual and asexual multiplication, pathogenicity, and its sensitivity to double-stranded (ds)RNA. We corroborate and extend earlier findings that conidiation, ascosporogenesis, and Fusarium head blight (FHB) symptom development require an operable RNAi machinery. The involvement of RNAi in conidiation is dependent on environmental conditions as it is detectable only under low light (<2 µmol m-2 s-1). Although both DCLs and AGOs partially share their functions, the sexual ascosporogenesis is mediated primarily by FgDCL1 and FgAGO2, while FgDCL2 and FgAGO1 contribute to asexual conidia formation and germination. FgDCL1 and FgAGO2 also account for pathogenesis as their knockout (KO) results in reduced FHB development. Apart from KO mutants Δdcl2 and Δago1, mutants Δrdrp2, Δrdrp3, Δrdrp4, Δqde3, and Δqip are strongly compromised for conidiation, while KO mutations in all RdPRs, QDE3, and QIP strongly affect ascosporogenesis. Analysis of trichothecenes mycotoxins in wheat kernels showed that the relative amount of deoxynivalenol (DON), calculated as [DON] per amount of fungal genomic DNA was reduced in all spikes infected with RNAi mutants, suggesting the possibility that the fungal RNAi pathways affect Fg's DON production. Moreover, silencing of fungal genes by exogenous target gene-specific double-stranded RNA (dsRNA) (spray-induced gene silencing, SIGS) is dependent on DCLs, AGOs, and QIP, but not on QDE3. Together these data show that in F. graminearum, different key components of the RNAi machinery are crucial in different steps of fungal development and pathogenicity.

14.
Mol Plant Pathol ; 20(12): 1636-1644, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603277

RESUMEN

CYP3RNA, a double-stranded (ds)RNA designed to concomitantly target the two sterol 14α-demethylase genes FgCYP51A and FgCYP51B and the fungal virulence factor FgCYP51C, inhibits the growth of the ascomycete fungus Fusarium graminearum (Fg) in vitro and in planta. Here we compare two different methods (setups) of dsRNA delivery, viz. transgene expression (host-induced gene silencing, HIGS) and spray application (spray-induced gene silencing, SIGS), to assess the activity of CYP3RNA and novel dsRNA species designed to target one or two FgCYP51 genes. Using Arabidopsis and barley, we found that dsRNA designed to target two FgCYP51 genes inhibited fungal growth more efficiently than dsRNA targeting a single gene, although both dsRNA species reduced fungal infection. Either dsRNA delivery method reduced fungal growth stronger than anticipated from previous mutational knock-out (KO) strategies, where single gene KO had no significant effect on fungal viability. Consistent with the strong inhibitory effects of the dsRNAs on fungal development in both setups, we detected to a large extent dsRNA-mediated co-silencing of respective non-target FgCYP51 genes. Together, our data further support the valuation that dsRNA applications have an interesting potential for pesticide target validation and gene function studies, apart from their potential for crop protection.


Asunto(s)
Arabidopsis/microbiología , Fusarium/efectos de los fármacos , Silenciador del Gen , Marcación de Gen/métodos , Genes Fúngicos/efectos de los fármacos , Hordeum/microbiología , ARN Bicatenario/farmacología , Sistema Enzimático del Citocromo P-450/genética , Fusarium/genética , Enfermedades de las Plantas/microbiología , Programas Informáticos , Transgenes
15.
PLoS One ; 13(4): e0196086, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29694399

RESUMEN

The phytohormones auxin and cytokinin control development and maintenance of plant meristems and stem cell systems. Fluorescent protein reporter lines that monitor phytohormone controlled gene expression programmes have been widely used to study development and differentiation in the model species Arabidopsis, but equivalent tools are still missing for the majority of crop species. Barley (Hordeum vulgare) is the fourth most abundant cereal crop plant, but knowledge on these important phytohormones in regard to the barley root and shoot stem cell niches is still negligible. We have now analysed the role of auxin and cytokinin in barley root meristem development, and present fluorescent protein reporter lines that allow to dissect auxin and cytokinin signalling outputs in vivo. We found that application of either auxin or cytokinin to barley seedlings negatively impacts root meristem growth. We further established a barley cytokinin reporter, TCSnew, which revealed significant cytokinin signalling in the stele cells proximal to the QC, and in the differentiated root cap cells. Application of exogenous cytokinin activated signalling in the root stem cell niche. Commonly employed auxin reporters DR5 or DR5v2 failed to respond to auxin in barley. However, analysis of putative auxin signalling targets barley PLETHORA1 (HvPLT1) is expressed in a similar pattern as its orthologue AtPLT1 from Arabidopsis, i.e. in the QC and the surrounding cells. Furthermore, the PINFORMED1 (HvPIN1) auxin efflux carrier was found to be expressed in root and shoot meristems, where it polarly localized to the plasma membrane. HvPIN1 expression is negatively regulated by cytokinin and its intracellular localisation is sensitive to brefeldinA (BFA). With this study, we provide the first fluorescent reporter lines as a tool to study auxin and cytokinin signalling and response pathways in barley.


Asunto(s)
Citocininas/farmacología , Hordeum/crecimiento & desarrollo , Hibridación Fluorescente in Situ/métodos , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Genes Reporteros , Hordeum/efectos de los fármacos , Hordeum/genética , Meristema/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Filogenia , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos
16.
Plant Biotechnol J ; 16(11): 1892-1903, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29577542

RESUMEN

Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (KO) mutants were not available and assessment of loss of function relied only on RNAi strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus pyogenes Cas9 (SpCas9)-mediated KO strategy to functionally study HvMORC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%-100%), which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorc1-KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed de-repressed expression of transposable elements (TEs), substantiating that plant MORC proteins contribute to genome stabilization in monocotyledonous and dicotyledonous plants.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica/métodos , Hordeum/genética , Proteínas de Plantas/genética , Adenosina Trifosfatasas/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Homocigoto , Proteínas de Plantas/fisiología , Regiones Promotoras Genéticas/genética , ARN Polimerasa III/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
17.
PLoS One ; 12(8): e0183577, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28832648

RESUMEN

Matrix metalloproteinases (MMPs) are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI) in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.


Asunto(s)
Arabidopsis/enzimología , Ascomicetos/patogenicidad , Metaloproteinasas de la Matriz/metabolismo , Arabidopsis/microbiología , Perfilación de la Expresión Génica , Metaloproteinasas de la Matriz/genética , Proteolisis
18.
Front Microbiol ; 8: 629, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450855

RESUMEN

Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. "Agrobacterium fabrum") is an endofungal bacterium of the fungal mutualist Piriformospora (syn. Serendipita) indica (Basidiomycota), which together form a tripartite Sebacinalean symbiosis with a broad range of plants. R. radiobacter strain F4 (RrF4), isolated from P. indica DSM 11827, induces growth promotion and systemic resistance in cereal crops, including barley and wheat, suggesting that R. radiobacter contributes to a successful symbiosis. Here, we studied the impact of endobacteria on the morphology and the beneficial activity of P. indica during interactions with plants. Low numbers of endobacteria were detected in the axenically grown P. indica (long term lab-cultured, lcPiri) whereas mycelia colonizing the plant root contained increased numbers of bacteria. Higher numbers of endobacteria were also found in axenic cultures of P. indica that was freshly re-isolated (riPiri) from plant roots, though numbers dropped during repeated axenic re-cultivation. Prolonged treatments of P. indica cultures with various antibiotics could not completely eliminate the bacterium, though the number of detectable endobacteria decreased significantly, resulting in partial-cured P. indica (pcPiri). pcPiri showed reduced growth in axenic cultures and poor sporulation. Consistent with this, pcPiri also showed reduced plant growth promotion and reduced systemic resistance against powdery mildew infection as compared with riPiri and lcPiri. These results are consistent with the assumption that the endobacterium R. radiobacter improves P. indica's fitness and thus contributes to the success of the tripartite Sebacinalean symbiosis.

19.
ISME J ; 10(4): 871-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26495996

RESUMEN

The Alphaproteobacterium Rhizobium radiobacter F4 (RrF4) was originally characterized as an endofungal bacterium in the beneficial endophytic Sebacinalean fungus Piriformospora indica. Although attempts to cure P. indica from RrF4 repeatedly failed, the bacterium can easily be grown in pure culture. Here, we report on RrF4's genome and the beneficial impact the free-living bacterium has on plants. In contrast to other endofungal bacteria, the genome size of RrF4 is not reduced. Instead, it shows a high degree of similarity to the plant pathogenic R. radiobacter (formerly: Agrobacterium tumefaciens) C58, except vibrant differences in both the tumor-inducing (pTi) and the accessor (pAt) plasmids, which can explain the loss of RrF4's pathogenicity. Similar to its fungal host, RrF4 colonizes plant roots without host preference and forms aggregates of attached cells and dense biofilms at the root surface of maturation zones. RrF4-colonized plants show increased biomass and enhanced resistance against bacterial leaf pathogens. Mutational analysis showed that, similar to P. indica, resistance mediated by RrF4 was dependent on the plant's jasmonate-based induced systemic resistance (ISR) pathway. Consistent with this, RrF4- and P. indica-induced pattern of defense gene expression were similar. In clear contrast to P. indica, but similar to plant growth-promoting rhizobacteria, RrF4 colonized not only the root outer cortex but also spread beyond the endodermis into the stele. On the basis of our findings, RrF4 is an efficient plant growth-promoting bacterium.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Arabidopsis/microbiología , Basidiomycota/fisiología , Arabidopsis/inmunología , Arabidopsis/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Inmunidad de la Planta , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Simbiosis
20.
Plant Dis ; 100(3): 640-644, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30688595

RESUMEN

Rhizoctonia solani AG8, causal agent of Rhizoctonia root rot and bare patch in dryland cereal production systems of the Pacific Northwest United States and Australia, reduces yields in a wide range of crops. Disease is not consistently controlled by available management practices, so genetic resistance would be a desirable resource for growers. In this report, we describe three rapid and low-cost assays for R. solani AG8 resistance in wheat and barley, with the view of facilitating screens for genetic resistance in these hosts. The first assay uses 50-ml conical centrifuge tubes containing soil infested with R. solani AG8 on a substrate of ground oats. The second assay uses roots of 3-day-old seedlings directly coated with infested ground oats, followed by incubation in plastic dishes. The third assay, suitable for barley, uses whole infested oat kernels in 50-ml tubes. Symptoms are quantified on the bases of root fresh weight and total root length at 7 and 3 days for the tube and coating assays, respectively. Each of the assays show the same disease differential between susceptible and partially resistant wheat genotypes. The assays can be conducted in the laboratory, growth chamber, or greenhouse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...