Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Article En | MEDLINE | ID: mdl-37917002

Like any other thermosetting material, polyurethane foams (PUFs) contain permanent cross-links that hinder their reprocessability and make their recyclability a tedious and environmentally unfriendly process. Herein, we introduce acetoacetyl-formed amides, formed by the reaction of isocyanates with acetoacetate groups, as dynamic units in the backbone of PUFs. By extensive variation of the foam composition, optimum parameters have been found to produce malleable foams above temperatures of 130 °C, without the requirement of any solvent during the foaming process. The PU cross-linked material can be compression-molded at least three times, giving rise to PU elastomers and thus maintaining a cross-linked network structure. Characterization of the original foams shows comparable properties to standard PUFs, for example, having a density of 32 kg/m3, while they show similar chemical and thermal properties upon reprocessing to strong PU elastomers, exhibiting Tg ranging from -42 to -48 °C. This research provides a straightforward method to produce thermally reprocessable PUFs as a promising pathway to address the recycling issues of end-of-life foams.

2.
Biomacromolecules ; 21(8): 3308-3317, 2020 08 10.
Article En | MEDLINE | ID: mdl-32658477

On-demand dissolution of hydrogels is being increasingly studied for their potential use in burn wound dressing applications. Herein, a dynamic diselenide-containing hydrogel is developed through a very simple one-pot and two-step process starting from the selenol functionalization of a partially hydrolyzed poly(2-ethyl-2-oxazoline) with γ-butyroselenolactone. The hydrogel spontaneously cross-links via an in situ oxidation of the selenol functionalities in air. The gelation process and the final viscoelastic properties of the gel are characterized by rheological experiments. The mechanical properties of those new diselenide-containing hydrogels are easily tuned by varying the concentration of γ-butyroselenolactone. The materials also show good skin adhesion and UV light responsiveness. A unique feature of the hydrogel is its capability to be fully and rapidly dissolved on-demand, via oxidation or reduction of the diselenide cross-links, making them particularly attractive for burn wound dressing applications.


Bandages , Hydrogels , Rheology , Skin
...