Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(4): 451-462, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894693

RESUMEN

RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.


Asunto(s)
Proteína de Replicación A , Telómero , Proteína de Replicación A/química , Telómero/metabolismo , ARN/metabolismo , ADN de Cadena Simple , Unión Proteica , Replicación del ADN
2.
Nat Commun ; 12(1): 3827, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158486

RESUMEN

The paradigm that checkpoints halt cell cycle progression for genome repair has been challenged by the recent discovery of heritable DNA lesions escaping checkpoint control. How such inherited lesions affect genome function and integrity is not well understood. Here, we identify a new class of heritable DNA lesions, which is marked by replication protein A (RPA), a protein primarily known for shielding single-stranded DNA in S/G2. We demonstrate that post-mitotic RPA foci occur at low frequency during unperturbed cell cycle progression, originate from the previous cell cycle, and are exacerbated upon replication stress. RPA-marked inherited ssDNA lesions are found at telomeres, particularly of ALT-positive cancer cells. We reveal that RPA protects these replication remnants in G1 to allow for post-mitotic DNA synthesis (post-MiDAS). Given that ALT-positive cancer cells exhibit high levels of replication stress and telomere fragility, targeting post-MiDAS might be a new therapeutic opportunity.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Mitosis/genética , Proteína de Replicación A/genética , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Microscopía Confocal , Proteína de Replicación A/metabolismo , Telómero/genética , Telómero/metabolismo , Imagen de Lapso de Tiempo/métodos , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
3.
Nat Commun ; 11(1): 5775, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188175

RESUMEN

Chromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled 'chromatin breathing' upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Histona Desacetilasa 1/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Commun ; 11(1): 5199, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060572

RESUMEN

Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.


Asunto(s)
ADP-Ribosilación/fisiología , Adenosina Difosfato Ribosa/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/aislamiento & purificación , Proteómica/métodos
5.
Cell Rep ; 32(5): 107985, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755579

RESUMEN

PARP inhibitors (PARPi) cause synthetic lethality in BRCA-deficient tumors. Whether specific vulnerabilities to PARPi exist beyond BRCA mutations and related defects in homology-directed repair (HDR) is not well understood. Here, we identify the ubiquitin E3 ligase TRIP12 as negative regulator of PARPi sensitivity. We show that TRIP12 controls steady-state PARP1 levels and limits PARPi-induced cytotoxic PARP1 trapping. Upon loss of TRIP12, elevated PARPi-induced PARP1 trapping causes increased DNA replication stress, DNA damage, cell cycle arrest, and cell death. Mechanistically, we demonstrate that TRIP12 binds PARP1 via a central PAR-binding WWE domain and, using its carboxy-terminal HECT domain, catalyzes polyubiquitylation of PARP1, triggering proteasomal degradation and preventing supra-physiological PARP1 accumulation. Further, in cohorts of breast and ovarian cancer patients, PARP1 abundance is negatively correlated with TRIP12 expression. We thus propose TRIP12 as regulator of PARP1 stability and PARPi-induced PARP trapping, with potential implications for PARPi sensitivity and resistance.


Asunto(s)
Proteínas Portadoras/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Línea Celular Tumoral , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Humanos , Modelos Biológicos , Mutágenos/toxicidad , Neoplasias/patología , Poli ADP Ribosilación/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Ubiquitinación/efectos de los fármacos
6.
J Cell Biol ; 218(9): 2865-2875, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31366665

RESUMEN

The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Inestabilidad Genómica , Proteolisis , Puntos de Control de la Fase S del Ciclo Celular , Ubiquitinación , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Estabilidad de Enzimas/genética , Células HeLa , Humanos
7.
EMBO J ; 38(16): e101379, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31267591

RESUMEN

The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.


Asunto(s)
Reparación del ADN , Extracción Líquido-Líquido/métodos , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Perros , Histonas/metabolismo , Humanos , Células MCF-7 , Células de Riñón Canino Madin Darby , Optogenética , Presión Osmótica , Estrés Fisiológico , Proteína 1 de Unión al Supresor Tumoral P53/genética
8.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639241

RESUMEN

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Poliadenilación , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas de Unión al ARN
9.
Nat Commun ; 9(1): 2678, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992957

RESUMEN

Exploiting the full potential of anti-cancer drugs necessitates a detailed understanding of their cytotoxic effects. While standard omics approaches are limited to cell population averages, emerging single cell techniques currently lack throughput and are not applicable for compound screens. Here, we employed a versatile and sensitive high-content microscopy-based approach to overcome these limitations and quantify multiple parameters of cytotoxicity at the single cell level and in a cell cycle resolved manner. Applied to PARP inhibitors (PARPi) this approach revealed an S-phase-specific DNA damage response after only 15 min, quantitatively differentiated responses to several clinically important PARPi, allowed for cell cycle resolved analyses of PARP trapping, and predicted conditions of PARPi hypersensitivity and resistance. The approach illuminates cellular mechanisms of drug synergism and, through a targeted multivariate screen, could identify a functional interaction between PARPi olaparib and NEDD8/SCF inhibition, which we show is dependent on PARP1 and linked to PARP1 trapping.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Microscopía Fluorescente/métodos , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Daño del ADN , Reparación del ADN , Resistencia a Medicamentos/genética , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Interferencia de ARN , Imagen de Lapso de Tiempo/métodos
10.
EMBO Rep ; 19(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29954836

RESUMEN

Despite recent mass spectrometry (MS)-based breakthroughs, comprehensive ADP-ribose (ADPr)-acceptor amino acid identification and ADPr-site localization remain challenging. Here, we report the establishment of an unbiased, multistep ADP-ribosylome data analysis workflow that led to the identification of tyrosine as a novel ARTD1/PARP1-dependent in vivo ADPr-acceptor amino acid. MS analyses of in vitro ADP-ribosylated proteins confirmed tyrosine as an ADPr-acceptor amino acid in RPS3A (Y155) and HPF1 (Y238) and demonstrated that trans-modification of RPS3A is dependent on HPF1. We provide an ADPr-site Localization Spectra Database (ADPr-LSD), which contains 288 high-quality ADPr-modified peptide spectra, to serve as ADPr spectral references for correct ADPr-site localizations.


Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Daño del ADN , Células HeLa , Humanos , Espectrometría de Masas , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteoma/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
11.
Cell Rep ; 19(9): 1819-1831, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28564601

RESUMEN

The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1's target mark H4K20me2. Consistently, premature maturation of post-replicative chromatin restores H4K20me2 and rescues 53BP1 accumulation on replicated chromatin. The H4K20me2-mediated chromatin association of 53BP1 thus represents an inbuilt mechanism to distinguish DSBs in pre- versus post-replicative chromatin, allowing for localized repair pathway choice decisions based on the availability of replication-generated template strands for HDR.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Humanos , Modelos Biológicos , Reparación del ADN por Recombinación
12.
Nucleic Acids Res ; 45(5): 2600-2614, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27994034

RESUMEN

Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Línea Celular , Citidina Monofosfato/metabolismo , ADN/biosíntesis , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , ARN/biosíntesis , Xerodermia Pigmentosa/genética
13.
Nat Commun ; 7: 10805, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26917111

RESUMEN

Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols ß and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol ß, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol ß- and λ-deficient cell extracts suggest that Pol ß levels can greatly affect rNMP incorporation opposite oxidative DNA lesions.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN , Estrés Oxidativo , Ribonucleótidos/metabolismo , Animales , Línea Celular , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Ratones
14.
Cell Metab ; 19(6): 1034-41, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24814482

RESUMEN

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Benzamidas/farmacología , Bencimidazoles/farmacología , Caenorhabditis elegans , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Sirtuina 1/genética , Sirtuina 1/metabolismo
15.
J Biol Chem ; 289(10): 7049-7058, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24443563

RESUMEN

Oxidation of DNA is a frequent and constantly occurring event. One of the best characterized oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). It instructs most DNA polymerases to preferentially insert an adenine (A) opposite 8-oxo-G instead of the appropriate cytosine (C) thus showing miscoding potential. The MutY DNA glycosylase homologue (MutYH) recognizes A:8-oxo-G mispairs and removes the mispaired A giving way to the canonical base excision repair that ultimately restores undamaged guanine (G). Here we characterize for the first time in detail a posttranslational modification of the human MutYH DNA glycosylase. We show that MutYH is ubiquitinated in vitro and in vivo by the E3 ligase Mule between amino acids 475 and 535. Mutation of five lysine residues in this region significantly stabilizes MutYH, suggesting that these are the target sites for ubiquitination. The endogenous MutYH protein levels depend on the amount of expressed Mule. Furthermore, MutYH and Mule physically interact. We found that a ubiquitination-deficient MutYH mutant shows enhanced binding to chromatin. The mutation frequency of the ovarian cancer cell line A2780, analyzed at the HPRT locus can be increased upon oxidative stress and depends on the MutYH levels that are regulated by Mule. This reflects the importance of tightly regulated MutYH levels in the cell. In summary our data show that ubiquitination is an important regulatory mechanism for the essential MutYH DNA glycosylase in human cells.


Asunto(s)
ADN Glicosilasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sustitución de Aminoácidos , Línea Celular Tumoral , Cromatina/metabolismo , ADN Glicosilasas/genética , Femenino , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Lisina/genética , Lisina/metabolismo , Mutación , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
16.
Proc Natl Acad Sci U S A ; 110(47): 18850-5, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191025

RESUMEN

The bypass of DNA lesions by the replication fork requires a switch between the replicative DNA polymerase (Pol) and a more specialized translesion synthesis (TLS) Pol to overcome the obstacle. DNA Pol δ-interacting protein 2 (PolDIP2) has been found to physically interact with Pol η, Pol ζ, and Rev1, suggesting a possible role of PolDIP2 in the TLS reaction. However, the consequences of PolDIP2 interaction on the properties of TLS Pols remain unknown. Here, we analyzed the effects of PolDIP2 on normal and TLS by five different human specialized Pols from three families: Pol δ (family B), Pol η and Pol ι (family Y), and Pol λ and Pol ß (family X). Our results show that PolDIP2 also physically interacts with Pol λ, which is involved in the correct bypass of 8-oxo-7,8-dihydroguanine (8-oxo-G) lesions. This interaction increases both the processivity and catalytic efficiency of the error-free bypass of a 8-oxo-G lesion by both Pols η and λ, but not by Pols ß or ι. Additionally, we provide evidence that PolDIP2 stimulates Pol δ without affecting its fidelity, facilitating the switch from Pol δ to Pol λ during 8-oxo-G TLS. PolDIP2 stimulates Pols λ and η mediated bypass of other common DNA lesions, such as abasic sites and cyclobutane thymine dimers. Finally, PolDIP2 silencing increases cell sensitivity to oxidative stress and its effect is further potentiated in a Pol λ deficient background, suggesting that PolDIP2 is an important mediator for TLS.


Asunto(s)
Daño del ADN/genética , ADN Polimerasa beta/metabolismo , Replicación del ADN/fisiología , Guanina/análogos & derivados , Proteínas Nucleares/metabolismo , Cromatografía por Intercambio Iónico , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli , Fluorescencia , Guanina/metabolismo , Humanos , Inmunoprecipitación , Cinética , Oligonucleótidos/genética , ARN Interferente Pequeño/genética
17.
Nat Struct Mol Biol ; 20(4): 502-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23474714

RESUMEN

ADP-ribosylation is an important post-translational protein modification (PTM) that regulates diverse biological processes. ADP-ribosyltransferase diphtheria toxin-like 10 (ARTD10, also known as PARP10) mono-ADP-ribosylates acidic side chains and is one of eighteen ADP-ribosyltransferases that catalyze mono- or poly-ADP-ribosylation of target proteins. Currently, no enzyme is known that reverses ARTD10-catalyzed mono-ADP-ribosylation. Here we report that ARTD10-modified targets are substrates for the macrodomain proteins MacroD1, MacroD2 and C6orf130 from Homo sapiens as well as for the macrodomain protein Af1521 from archaebacteria. Structural modeling and mutagenesis of MacroD1 and MacroD2 revealed a common core structure with Asp102 and His106 of MacroD2 implicated in the hydrolytic reaction. Notably, MacroD2 reversed the ARTD10-catalyzed, mono-ADP-ribose-mediated inhibition of glycogen synthase kinase 3ß (GSK3ß) in vitro and in cells, thus underlining the physiological and regulatory importance of mono-ADP-ribosylhydrolase activity. Our results establish macrodomain-containing proteins as mono-ADP-ribosylhydrolases and define a class of enzymes that renders mono-ADP-ribosylation a reversible modification.


Asunto(s)
N-Glicosil Hidrolasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Humanos , Modelos Moleculares , Mutagénesis , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética
18.
Int J Biochem Cell Biol ; 40(10): 2274-83, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18436469

RESUMEN

Poly-ADP-ribose polymerase-2 (PARP-2) was described to regulate cellular functions comprising DNA surveillance, inflammation and cell differentiation by co-regulating different transcription factors. Using an in vitro and in vivo approach, we identified PARP-2 as a new substrate for the histone acetyltransferases PCAF and GCN5L. Site directed mutagenesis indicated that lysines 36 and 37, located in the nuclear localization signal of PARP-2, are the main targets for PCAF and GCN5L activity in vitro. Interestingly, acetylation of the same two PARP-2 residues reduces the DNA binding and enzymatic activity of PARP-2. Finally, PARP-2 with mutated lysines 36 and 37 showed reduced auto-mono-ADP-ribosylation when compared to wild type PARP-2. Together, our results provide evidence that acetylation of PARP-2 is a key post-translational modification that may regulate DNA binding and consequently also the enzymatic activity of PARP-2.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Lisina/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Línea Celular , ADN/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica , Factores de Transcripción p300-CBP/metabolismo
19.
Genome Res ; 17(12): 1774-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17989249

RESUMEN

Comprehensive approaches to detect protein-protein interactions (PPIs) have been most successful in the yeast model system. Here we present "Cross-and-Capture," a novel assay for rapid, sensitive assessment of PPIs via pulldown of differently tagged yeast strain arrays. About 500 yeast genes that function in DNA replication, repair, and recombination and nuclear proteins of unknown function were chromosomally tagged with six histidine residues or triple VSV epitopes. We demonstrate that the assay can interrogate a wide range of previously known protein complexes with increased resolution and sensitivity. Furthermore, we use "Cross-and-Capture" to identify two novel protein complexes: Rtt101p-Mms1p and Sae2p-Mre11p. The Rtt101p-Mms1p interaction was subsequently characterized by genetic and functional analyses. Our studies establish the "Cross-and-Capture" assay as a novel, versatile tool that provides a valuable complement for the next generation of yeast proteomic studies.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de Matrices Tisulares , Técnicas del Sistema de Dos Híbridos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Lugares Marcados de Secuencia , Análisis de Matrices Tisulares/métodos
20.
J Biol Chem ; 280(49): 40450-64, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16204234

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) and nuclear factor kappaB (NF-kappaB) have both been demonstrated to play a pathophysiological role in a number of inflammatory disorders. We recently presented evidence that PARP-1 can act as a promoter-specific coactivator of NF-kappaB in vivo independent of its enzymatic activity. PARP-1 directly interacts with p300 and both subunits of NF-kappaB (p65 and p50) and synergistically coactivates NF-kappaB-dependent transcription. Here we show that PARP-1 is acetylated in vivo at specific lysine residues by p300/CREB-binding protein upon stimulation. Furthermore, acetylation of PARP-1 at these residues is required for the interaction of PARP-1 with p50 and synergistic coactivation of NF-kappaB by p300 and the Mediator complex in response to inflammatory stimuli. PARP-1 physically interacts with the Mediator. Interestingly, PARP-1 interacts in vivo with histone deacetylases (HDACs) 1-3 but not with HDACs 4-6 and might be deacetylated in vivo by HDACs 1-3. Thus, acetylation of PARP-1 by p300/CREB-binding protein plays an important regulatory role in NF-kappaB-dependent gene activation by enhancing its functional interaction with p300 and the Mediator complex.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Regulación de la Expresión Génica/fisiología , FN-kappa B/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/fisiología , Quimiocina CXCL2 , Quimiocinas/genética , Histona Acetiltransferasas/análisis , Histona Acetiltransferasas/fisiología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/farmacología , Óxido Nítrico Sintasa de Tipo II/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/análisis , Factores de Transcripción/fisiología , Transcripción Genética , Activación Transcripcional , Transfección , Factor de Necrosis Tumoral alfa/farmacología , Factores de Transcripción p300-CBP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...