Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Chromatogr A ; 1722: 464862, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581978

The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.


Chromatography, Gel , Liposomes , Nanoparticles , Chromatography, Gel/methods , Nanoparticles/chemistry , Biological Products/analysis , Biological Products/chemistry , Nucleic Acids/analysis , Genetic Vectors , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/isolation & purification , Proteins/analysis , Proteins/chemistry , Humans , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods
2.
J Chromatogr A ; 1714: 464587, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38150795

More and more transformative gene therapies (GTx) are reaching commercialization stage and many of them use Adeno Associated Viruses (AAVs) as their vector. Being larger than therapeutic antibodies, their size variant analysis poses an analytical challenge that must be addressed to speed up the development processes. Size exclusion chromatography (SEC) can provide critical information on the quality and purity of the product, but its full potential is not yet utilized by currently applied columns that are (i) packed with relatively large particles, (ii) prepared exclusively in large formats and (iii) built using metal hardware that is prone to secondary interactions. In this paper, we investigate the use of state-of-the-art sub-3 µm particles to address existing limitations. A prototype 2.5 µm column was found to deliver superior kinetic efficiency, significant reduction in run times and increased resolution of separations. No evidence for shear or sample sieving effects were found during comparisons with conventional 5 µm columns. Moreover, use of low adsorption hardware enabled the application of a wide range of mobile phase conditions and a chance to apply a more robust platform method for several AAV serotypes. The resulting method was tested for its reproducibility as well as utility for critical quality attribute assays, including multiangle light scattering based (MALS) measurements of size and molar mass. Thus, a new tool for higher resolution, higher throughput size variant analysis of AAVs has been described.


Adsorption , Reproducibility of Results , Particle Size , Chromatography, Gel , Kinetics
3.
Chembiochem ; 24(1): e202200561, 2023 01 03.
Article En | MEDLINE | ID: mdl-36349499

Peptidic motifs folded in a defined conformation are able to inhibit protein-protein interactions (PPIs) covering large interfaces and as such they are biomedical molecules of interest. Mimicry of such natural structures with synthetically tractable constructs often requires complex scaffolding and extensive optimization to preserve the fidelity of binding to the target. Here, we present a novel proteomimetic strategy based on a 2-helix binding motif that is brought together by hybridization of peptide nucleic acids (PNA) and stabilized by a rationally positioned intermolecular disulfide crosslink. Using a solid phase synthesis approach (SPPS), the building blocks are easily accessible and such supramolecular peptide-PNA helical hybrids could be further coiled using precise templated chemistry. The elaboration of the structural design afforded high affinity SARS CoV-2 RBD (receptor binding domain) binders without interference with the underlying peptide sequence, creating a basis for a new architecture of supramolecular proteomimetics.


COVID-19 , Peptide Nucleic Acids , Humans , Peptide Nucleic Acids/chemistry , Disulfides , Amino Acid Sequence , Peptides
4.
J Am Chem Soc ; 143(45): 18932-18940, 2021 11 17.
Article En | MEDLINE | ID: mdl-34739233

Stapled peptides with an enforced α-helical conformation have been shown to overcome major limitations in the development of short peptides targeting protein-protein interactions (PPIs). While the growing arsenal of methodologies to staple peptides facilitates their preparation, stapling methodologies are not broadly embraced in synthetic library screening. Herein, we report a strategy leveraged on hybridization of short PNA-peptide conjugates wherein nucleobase driven assembly facilitates ligation of peptide fragments and constrains the peptide's conformation into an α-helix. Using native chemical ligation, we show that a mixture of peptide fragments can be combinatorially ligated and used directly in affinity selection against a target of interest. This approach was exemplified with a focused library targeting the p-53/MDM2 interaction. One hundred peptides were obtained in a one-pot ligation reaction, selected by affinity against MDM2 immobilized on beads, and the best binders were identified by mass spectrometry.


Peptide Nucleic Acids/metabolism , Peptides/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Nucleic Acid Hybridization , Peptide Library , Peptide Nucleic Acids/chemistry , Protein Binding/drug effects , Protein Conformation, alpha-Helical , Proto-Oncogene Proteins c-mdm2/chemistry , Tumor Suppressor Protein p53/chemistry
5.
ACS Cent Sci ; 7(1): 145-155, 2021 Jan 27.
Article En | MEDLINE | ID: mdl-33532577

The carbonyl group is now a widely useful, nonproteinogenic functional group in chemical biology, yet methods for its generation in proteins have relied upon either cotranslational incorporation of unnatural amino acids bearing carbonyls or oxidative conversion (chemical or enzymatic) of existing natural amino acids. If available, alternative strategies for directly adding the C=O group through C-C bond-forming C-carbonylation, particularly at currently inaccessible amino acid sites, would provide a powerful method for adding valuable reactivity and expanding possible function in proteins. Here, following a survey of methods for HCF2· generation, we show that reductive photoredox catalysis enables mild radical-mediated difluoromethylation-hydrolysis of native protein residues as an effective method for carbonylation. Inherent selectivity of HCF2· allowed preferential modification of Trp residues. The resulting C-2-difluoromethylated Trp undergoes Reimer-Tiemann-type dehalogenation providing highly effective spontaneous hydrolytic collapse in proteins to carbonylated HC(O)-Trp (C-formyl-Trp = CfW) residues. This new, unnatural protein residue CfW not only was found to be effective in bioconjugation, ligation, and labeling reactions but also displayed strong "red-shifting" of its absorption and fluorescent emission maxima, allowing direct use of Trp sites as UV-visualized fluorophores in proteins and even cells. In this way, this method for the effective generation of masked formyl-radical "HC(O)·" equivalents enables first examples of C-C bond-forming carbonylation in proteins, thereby expanding the chemical reactivity and spectroscopic function that may be selectively and post-translationally "edited" into biology.

6.
J Am Chem Soc ; 142(3): 1180-1185, 2020 01 22.
Article En | MEDLINE | ID: mdl-31913613

18F labeling strategies for unmodified peptides with [18F]fluoride require 18F-labeled prosthetics for bioconjugation more often with cysteine thiols or lysine amines. Here we explore selective radical chemistry to target aromatic residues applying C-H 18F-trifluoromethylation. We report a one-step route to [18F]CF3SO2NH4 from [18F]fluoride and its application to direct [18F]CF3 incorporation at tryptophan or tyrosine residues using unmodified peptides as complex as recombinant human insulin. The fully automated radiosynthesis of octreotide[Trp(2-CF218F)] enables in vivo positron emission tomography imaging.


Chlorofluorocarbons, Methane/chemistry , Fluorine Radioisotopes/chemistry , Peptides/chemistry , Sulfur Compounds/chemistry , Methylation , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
7.
J Am Chem Soc ; 140(5): 1568-1571, 2018 02 07.
Article En | MEDLINE | ID: mdl-29301396

The incorporation of fluorine can not only significantly facilitate the study of proteins but also potentially modulate their function. Though some biosynthetic methods allow global residue-replacement, post-translational fluorine incorporation would constitute a fast and efficient alternative. Here, we reveal a mild method for direct protein radical trifluoromethylation at native residues as a strategy for symmetric-multifluorine incorporation on mg scales with high recoveries. High selectivity toward tryptophan residues enhanced the utility of this direct trifluoromethylation technique allowing ready study of fluorinated protein constructs using 19F-NMR.


Hemeproteins/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Myoglobin/chemistry , Tryptophan/chemistry , Animals , Free Radicals/chemical synthesis , Free Radicals/chemistry , Horses , Hydrocarbons, Fluorinated/chemistry , Molecular Structure
...