Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 25(11): e202300848, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38233352

RESUMEN

The syntheses and characterisation of the 4-[{[4-({n-[4-(4-cyanophenyl)phenyl]-n-yl}oxy)phenyl]-methylidene}amino]phenyl-4-alkoxybenzoates (CBnOIBeOm) are reported with n=8 and 10 and m=1-10. The two series display fascinating liquid crystal polymorphism. All twenty reported homologues display an enantiotropic nematic (N) phase at high temperature. When the length of the spacer (n) is greater than that of the terminal chain (m), the twist-bend nematic (NTB) phase is observed at temperatures below the N phase. As the length of the terminal chain is increased and extends beyond the length of the spacer up to three smectic phases are observed on cooling the N phase. One of these smectic phases has been assigned as the rare twist-bend smectic C subphase, the SmCTB-α phase. In all the smectic phases, a monolayer packing arrangement is seen, and this is attributed to the anti-parallel associations of the like mesogenic units.

2.
ACS Omega ; 8(39): 36562-36568, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810647

RESUMEN

We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.

3.
Phys Rev Lett ; 130(21): 216802, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295101

RESUMEN

A critical end point above which an isotropic phase continuously evolves into a polar (ferroelectric) nematic phase with an increasing electric field is found in a ferroelectric nematic liquid crystalline material. The critical end point is approximately 30 K above the zero-field transition temperature from the isotropic to nematic phase and at an electric field of the order of 10 V/µm. Such systems are interesting from the application point of view because a strong birefringence can be induced in a broad temperature range in an optically isotropic phase.

4.
Chemphyschem ; 24(6): e202300105, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916801

RESUMEN

The front cover artwork is provided by Dr Rebecca Walker of the Liquid Crystals Group at the University of Aberdeen. The image is a cartoon depiction of the formation of the heliconical chiral twist-bend nematic phase (N*TB ) from its constituent bent molecules. The presence of a single enantiomer of the chiral, lactate-based liquid crystal dimers biases the formation of helices with only one handedness, unlike in the conventional NTB phase, observed for achiral molecules, for which the left- and right-handed helices are doubly degenerate. Read the full text of the Research Article at 10.1002/cphc.202200807.

5.
Chemistry ; 29(28): e202300073, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36807424

RESUMEN

The synthesis and characterisation of two series of low molar mass mesogens, the (4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3.m) and the (3-fluoro-4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3F.m), are reported in order to investigate the effect of changing the position of a lateral alkoxy chain from the methoxy-substituted terminal ring to the central phenyl ring in these two series of materials based on RM734. All members of the NT3.m series exhibited a conventional nematic phase, N, which preceded the ferroelectric nematic phase, NF , whereas all the members of the NT3F.m series exhibited direct NF -I transitions except for NT3F.1 which also exhibited an N phase. These materials cannot be described as wedge-shaped, yet their values of the ferroelectric nematic-nematic transition temperature, T N F N ${{_{{\rm N}{_{{\rm F}}}{\rm N}}}}$ , exceed those of the corresponding materials with the lateral alkoxy chain located on the methoxy-substituted terminal ring. In part, this may be attributed to the effect that changing the position of the lateral alkoxy chain has on the electronic properties of these materials, specifically on the electron density associated with the methoxy-substituted terminal aromatic ring. The value of TNI decreased with the addition of a fluorine atom ortho to the nitro group in NT3F.1, however, the opposite behaviour was found when the transition temperatures of the NF phase were compared which are higher for the NT3F.m series. This may reflect a change in the polarity and polarizability of the NT3F.m series compared to the NT3.m series. Therefore, it is suggested that, rather than simply promoting a tapered shape, the role of the lateral chain in inhibiting anti-parallel associations and its effect on the electronic properties of the molecules are the key factors in driving the formation of the NF phase.

6.
Chemphyschem ; 24(7): e202200758, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36449329

RESUMEN

The inclusion of secondary and tertiary benzanilide-based mesogenic groups into liquid crystal dimers is reported as a means to develop new materials. Furthermore, substitution at the nitrogen atom is shown to introduce an additional synthetic 'handle' to modify the molecular structure of the tertiary materials. The design of these materials has proved challenging due to the strong preferences of 3° benzanilides for the E amide conformation. In this work, lateral substitution is used to modify the conformational preferences of the amide linkage and promote liquid crystallinity for a series of N-methyl benzanilide dimers. As the proportion of the E conformer decreases, the nematic-isotropic transition temperatures increase, and enantiotropic nematic behaviour is observed. We also report the synthesis and characterisation of the analogous 2° benzanilide-based materials, which show nematic and twist-bend nematic behaviour. This approach highlights the effects that seemingly small structural modifications, such as the inclusion and position of a methyl group, can have on molecular shape and hence, liquid crystalline behaviour.

7.
Chemphyschem ; 24(6): e202200807, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422888

RESUMEN

Non-symmetric lactate-based chiral liquid crystal dimers containing an odd-membered spacer are shown to exhibit a chiral twist-bend nematic phase which is stable on cooling to room temperature. A comparison of racemic and optically pure materials reveals that the pitch length in the N*TB phase is not influenced by molecular chirality, whereas the nematic-twist-bend nematic transition temperature is increased.

8.
RSC Adv ; 12(45): 29482-29490, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320775

RESUMEN

The synthesis and characterisation of two series of low molar mass liquid crystals, the 4-[(4-nitrophenoxy)carbonyl]phenyl 2-alkoxy-4-methoxybenzoates (series 5-m) and the 4-[(3-fluoro-4-nitrophenoxy)carbonyl]phenyl 2-alkoxy-4-methoxybenzoates (series 6-m) are reported in order to explore the effects of a lateral alkyloxy chain on the formation and stability of the recently discovered ferroelectric nematic phase. In both series m, the number of carbon atoms in the lateral chain, is varied from one to nine. The two series differ by the addition of a fluorine substituent in the 6-m series. 5-1 is the extensively studied ferroelectric nematogen RM734. All the members of the 5-m series exhibited both a conventional nematic, N, and ferroelectric nematic, NF, phase, whereas all the members of the 6-m series exhibit a direct NF-I transition with the exception of 6-1 that also exhibits a N phase. The replacement of a hydrogen atom by a fluorine atom reduces the nematic-isotropic transition temperature, T NI, whereas the ferroelectric nematic-nematic, or isotropic, transition temperature, T NFN/I, increases. This is interpreted in terms of the reduced structural anisotropy associated with the larger fluorine atom whereas the increase in the stability of the NF phase reflects changes in polarity and polarizability. The dependence of T NI and T NFN/I on m in both series is similar, and these initially decrease on increasing m but converge to limiting values on further increasing m. This suggests that the lateral alkyloxy chain may adopt conformations in which it lies along the major axis of the mesogenic unit.

9.
Soft Matter ; 18(25): 4679-4688, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35678154

RESUMEN

The synthesis and characterisation of the 1-(4-cyanobiphenyl-4'-yl)-10-(4-alkylanilinebenzylidene-4'-oxy)decanes (CB10O·m) are reported. This series shows a rich liquid crystal polymorphism including twist-bend nematic and smectic phases. All the homologues reported exhibit an enantiotropic conventional nematic phase. For the homologues with m ≤ 10, the local packing in the nematic phases and the layer spacing in the smectic phases indicates an intercalated arrangement of the molecules. An intercalated smectic CA phase is observed if m/11 ≈ 0.5. Either side of this condition, the twist-bend nematic phase is observed, a novel pattern of behaviour for a series on increasing a terminal chain length. For longer chain lengths, m = 12, 14, 16 and 18, two twist-bend smectic C (SmCTB) phases are observed, and the packing of the molecules is now of a bilayer-type. The higher temperature variant is termed SmCTB-SH in which SH (single helix) refers to the presence of a short, distorted clock-type helix. In the lower temperature SmCTB-DH phase, an additional longer helix is superimposed on the short one, and DH denotes double helix.

10.
ACS Omega ; 7(11): 9785-9795, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350322

RESUMEN

Flexoelectricity may have an important impact on the switching properties of nematic and cholesteric liquid crystals due to the linear coupling between the flexoelectric polarization of the liquid crystal and the applied electric field. This coupling is the origin of the extraordinary electro-optic effect in cholesterics aligned in the uniform lying helix texture, resulting in fast switching and field control of both rise and fall times. Therefore, the flexoelectric properties of the liquid crystals have become an important issue when designing and synthesizing liquid crystal materials and/or preparing their mixtures with appropriate flexoelectric compounds (dopants). Here, we report on the flexoelectric polarization of a highly polar nematic liquid crystal host enhanced by doping it with two newly synthesized dopants SK 1-6 and SK 1-8, possessing a hockey stick molecular shape, and comparing their doping effect with the one of the dimeric dopants CB7CB possessing a symmetric bend molecular shape. All dopants were dissolved in small concentration (5 wt %) in the nematic host so that the linear approximation of the dependence of the difference between splay e s and bend e b flexoelectric constants, that is, (e s - e b), on the concentration of the dopant in the host material can be applied. In this way, (e s - e b) was estimated for the hockey stick dopants SK 1-6 and SK 1-8 to be 0.182 and 0.204 nC/m, respectively. The obtained flexoelectric polarization of these dopants is among the highest reported in the literature so far.

11.
Phys Rev E ; 104(4-1): 044702, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781517

RESUMEN

An oblique helicoidal cholesteric liquid crystal Ch_{OH} represents a unique optical material with a single-harmonic periodic modulation of the refractive index and a pitch that can be tuned by an electric or magnetic field in a broad range from submicrometers to micrometers. In this work, we demonstrate that the oblique helicoidal cholesteric doped with azoxybenzene molecules can be tuned by both the electric field and light irradiation. The tuning mechanism is explained by the kinetics of trans-cis photoisomerization of the azoxybenzene molecules. At a fixed voltage, UV irradiation causes a redshift of the reflection peak by more than 200 nm. The effect is caused by an increase of the bend elastic constant of Ch_{OH} under irradiation. The demonstrated principle has the potential for applications such as smart windows, sensors, tunable lasers, and filters.

12.
Chemphyschem ; 22(24): 2506-2510, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34623724

RESUMEN

Liquid-crystal materials exhibiting up to three nematic phases are reported. Dielectric response measurements show that while the lower temperature nematic phase has ferroelectric order and the highest temperature nematic phase is apolar, the intermediate phase has local antiferroelectric order. The modification of the molecular structure by increasing the number of lateral fluorine substituents leads to one of the materials showing a direct isotropic-ferronematic phase transition.

13.
Adv Mater ; 33(39): e2103288, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34396593

RESUMEN

Achiral mesogenic molecules are shown to be able to spontaneously assemble into liquid crystalline smectic phases having either simple or double-helical structures. At the transition between these phases, the double-helical structure unwinds. As a consequence, in some temperature range, the pitch of the helix becomes comparable to the wavelength of visible light and the selective reflection of light in the visible range is observed. The photonic bandgap phenomenon is reported for achiral liquid crystals.

14.
Phys Chem Chem Phys ; 23(22): 12600-12611, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047739

RESUMEN

A number of liquid crystal dimers have been synthesised and characterised containing secondary or tertiary (N-methyl) benzanilide-based mesogenic groups. The secondary amides all form nematic phases, and we present the first example of an amide to show the twist-bend nematic (NTB) phase. Only two of the corresponding N-methylated dimers formed a nematic phase and with greatly reduced nematic-isotropic transition temperatures. Characterisation using 2D ROESY NMR experiments, DFT geometry optimisation and X-ray diffraction reveal that there is a change in the preferred conformation of the benzanilide core on methylation, from Z to E. The rotational barrier around the N-C(O) bond has been measured using variable temperature 1H NMR spectroscopy. This dramatic change in shape accounts for the remarkable difference in liquid crystalline behaviour between these secondary and tertiary amide-based materials.

15.
Chemphyschem ; 22(5): 461-470, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369044

RESUMEN

A selection of pyrene-based liquid crystal dimers have been prepared, containing either methylene-ether or diether linked spacers of varying length and parity. All the diether linked materials, CBOnO.Py (n=5, 6, 11, 12), exhibit conventional nematic and smectic A phases, with the exception of CBO11O.Py which is exclusively nematic. The methylene-ether linked dimer, CBnO.Py, with an even-membered spacer (n=5) was solely nematogenic, but odd-members (n=6, 8, 10) exhibited both nematic and twist-bend nematic phases. Replacement of the cyanobiphenyl fragment by cyanoterphenyl giving CT6O.Py, gave elevated melting and nematic-isotropic transition temperatures, and SmA and SmCA phases were observed on cooling the nematic phase. Intermolecular face-to-face associations of the pyrene moieties drive glass formation, and all these materials have a glass transition temperature at or above room temperature. The stability of the glassy twist-bend nematic phase allowed for its study using AFM, and the helical pitch length, PTB , was measured as 6.3 and 6.7 nm for CB6O.Py and CB8O.Py, respectively. These values are comparable to the shortest pitch of a twist-bend nematic phase measured to date.

16.
J Vis Exp ; (152)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31736478

RESUMEN

Smart viscoelastic materials that respond to specific stimuli are one of the most attractive classes of materials important to future technologies, such as on-demand switchable adhesion technologies, actuators, molecular clutches, and nano-/microscopic mass transporters. Recently it was found that through a special solid-liquid transition, rheological properties can exhibit significant changes, thus providing suitable smart viscoelastic materials. However, designing materials with such a property is complex, and forward and backward switching times are usually long. Therefore, it is important to explore new working mechanisms to realize solid-liquid transitions, shorten the switching time, and enhance the contrast of rheological properties during switching. Here, a light-induced crystal-liquid phase transition is observed, which is characterized by means of polarizing light microscopy (POM), photorheometry, photo-differential scanning calorimetry (photo-DSC), and X-ray diffraction (XRD). The light-induced crystal-liquid phase transition presents key features such as (1) fast switching of crystal-liquid phases for both forward and backward reactions and (2) a high contrast ratio of viscoelasticity. In the characterization, POM is advantageous in offering information on the spatial distribution of LC molecule orientations, determining the type of liquid crystalline phases appearing in the material, and studying the orientation of LCs. Photorheometry allows measurement of a material's rheological properties under light stimuli and can reveal the photorheological switching properties of materials. Photo-DSC is a technique to investigate thermodynamic information of materials in darkness and under light irradiation. Lastly, XRD allows studying of microscopic structures of materials. The goal of this article is to clearly present how to prepare and measure the discussed properties of a photorheological material.


Asunto(s)
Luz , Cristales Líquidos/química , Reología , Rastreo Diferencial de Calorimetría , Cristalización , Microscopía de Polarización , Transición de Fase , Termodinámica , Viscosidad , Difracción de Rayos X
17.
Chemistry ; 25(58): 13329-13335, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31322779

RESUMEN

The twist-bend nematic, NTB , phase has been observed for chiral materials in which chirality is introduced through a branched 2-methylbutyl terminal tail. The chiral twist-bend nematic phase, N*TB , is completely miscible with the NTB phase of the standard achiral material, CB6OCB. The N*TB phase exhibits optical textures with lower birefringence than those observed for the achiral NTB phase, suggesting an additional mechanism of averaging molecular orientations. The N*-N*TB transition temperatures for the chiral materials are higher than the NTB -N transition temperatures seen for the corresponding racemic materials. This suggests the double degeneracy of helical twist sense in the N T B * phase is removed by the intrinsic molecular chirality. A square lattice pattern is observed in the N* phase over a temperature range of several degrees above the N*TB -N phase transition, which may be attributed to a non-monotonic dependence of the bend elastic constant.

18.
Proc Natl Acad Sci U S A ; 116(22): 10698-10704, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31088967

RESUMEN

We synthesized the liquid crystal dimer and trimer members of a series of flexible linear oligomers and characterized their microscopic and nanoscopic properties using resonant soft X-ray scattering and a number of other experimental techniques. On the microscopic scale, the twist-bend phases of the dimer and trimer appear essentially identical. However, while the liquid crystal dimer exhibits a temperature-dependent variation of its twist-bend helical pitch varying from 100 to 170 Å on heating, the trimer exhibits an essentially temperature-independent pitch of 66 Å, significantly shorter than those reported for other twist-bend forming materials in the literature. We attribute this to a specific combination of intrinsic conformational bend of the trimer molecules and a sterically favorable intercalation of the trimers over a commensurate fraction (two-thirds) of the molecular length. We develop a geometric model of the twist-bend phase for these materials with the molecules arranging into helical chain structures, and we fully determine their respective geometric parameters.

19.
Sci Rep ; 9(1): 5468, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940868

RESUMEN

There has been a recent surge of interest in smart materials and devices with stimuli-responsive properties for optical modulations. Cholesteric liquid crystals (CLCs) are a unique class of light-manipulating materials, and strongly interact with light and other electromagnetic (EM) waves. Because of their intricate helical structure, new properties of CLC have emerged revealing unique optical behavior that has resulted in rewriting Braggs' law for how light interacts with soft materials. The aim of this work is to push the limits of spectral tuning with a new method of augmenting light-cholesteric interactions using a polymer-sustained conical helix (PSCH) structure. We experimentally explore the reversibility of reflective wavelength modulation and validate the mechanism enhanced by a polymer-sustained helicoidal structure via theoretical analyses. The conical helix structure of a CLC, formed by low-field-induced oblique orientation of cholesteric helices, is comprised of a chiral dopant, a conventional nematic, and bimesogenic and trimesogenic nematics. Polymerizing a small amount of a reactive mesogen in the CLC with an applied electric field produces a templated helical polymer network that enables three switched optical states, including light-scattering and transparent states as well as color reflection in response to an applied increasing or decreasing electric field. An electro-activated PSCH optical film covers a wide color space, which is appropriate for tunable color device applications. We envisage that this PSCH material will lead to new avenues for controlling EM waves in imaging and thermal control, smart windows and electronic papers.

20.
Nat Commun ; 10(1): 1922, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015460

RESUMEN

Complex materials often exhibit a hierarchical structure with an intriguing mechanism responsible for the 'propagation' of order from the molecular to the nano- or micro-scale level. In particular, the chirality of biological molecules such as nucleic acids and amino acids is responsible for the helical structure of DNA and proteins, which in turn leads to the lack of mirror symmetry of macro-bio-objects. To fully understand mechanisms of cross-level order transfer there is an intensive search for simpler artificial structures exhibiting hierarchical arrangement. Here we present complex systems built of achiral molecules that show four levels of structural chirality: layer chirality, helicity of a basic repeating unit, mesoscopic helix and helical filaments. The structures are identified by a combination of hard and soft x-ray diffraction measurements, optical studies and theoretical modelling. Similarly to many biological systems, the studied materials exhibit a coupling between chirality at different levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA