Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
ACS Appl Mater Interfaces ; 15(39): 46157-46170, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37728642

The vision-inspired artificial neural network based on optical synapses has drawn a tremendous amount of attention for emulating biological senses. Although photoexcitation-induced synaptic functionalities have been widely studied, optical habituation via the photoinhibitory pathway is yet to be demonstrated for sophisticated biomimetic visual adaptive systems. Here, the first optical neuromorphic block copolymer (BCP) phototransistor is demonstrated as an all-optical operation responding to various wavelengths, fulfilling photoassisted dynamic learning/forgetting cycles via optical potentiation without gate bias. The polyfluorene BCPs were precisely designed to enable wavelength-adaptive responses, benefiting from interfacial semiconductor/electret morphology and the crystallinity/electron affinity of the BCPs. Notably, this is the first work to simultaneously exhibit fully light-controlled short- and long-term memory based on organic material systems. The device presents a high current contrast above 100-fold and long-term retention over 104 s. As a proof-of-concept for neural networks, a 6 × 6 array of photosynapses performed outstanding visual pattern learning/forgetting with high accuracy. This study exploits the design strategy of a conjugated BCP electret to unleash the full potential of wavelength-adaptive visual neuroplasticity transitions. It provides an effective architecture for designing high-performance and high-storage capacity required applications in next-generation neuromorphic systems.

2.
Adv Sci (Weinh) ; 9(8): e2105190, 2022 Mar.
Article En | MEDLINE | ID: mdl-35064648

Neuromorphic computation possesses the advantages of self-learning, highly parallel computation, and low energy consumption, and is of great promise to overcome the bottleneck of von Neumann computation. In this work, a series of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) with different coil segments, including polystyrene, poly(2-vinylpyridine) (P2VP), poly(2-vinylnaphthalene), and poly(butyl acrylate), are utilized in photosynaptic transistor to emulate paired-pulse facilitation, spike time/rate-dependent plasticity, short/long-term neuroplasticity, and learning-forgetting-relearning processes. P3HT serves as a carrier transport channel and a photogate, while the insulating coils with electrophilic groups are for charge trapping and preservation. Three main factors are unveiled to govern the properties of these P3HT-based BCPs: i) rigidity of the insulating coil, ii) energy levels between the constituent polymers, and iii) electrophilicity of the insulating coil. Accordingly, P3HT-b-P2VP-based photosynaptic transistor with a sought-after BCP combination demonstrates long-term memory behavior with current contrast up to 105 , short-term memory behavior with high paired-pulse facilitation ratio of 1.38, and an ultralow energy consumption of 0.56 fJ at an operating voltage of -0.0003 V. As far as it is known, this is the first work to utilize conjugated BCPs in an electret-free photosynaptic transistor showing great potential to the artificial intelligence technology.

3.
ACS Appl Mater Interfaces ; 13(27): 31898-31909, 2021 Jul 14.
Article En | MEDLINE | ID: mdl-34190528

Regioregular polythiophenes have been widely used in organic electronic applications due to their solution processability with chemical modification through side chain engineering, as well as their microstructural organization and good hole transport properties. Here, we introduce alkylthio side chains, (poly[(3-alkylthio)thiophene]s; P3ATTs), with strong noncovalent sulfur molecular interactions, to main chain thienyl backbones. These P3ATTs were compared with alkyl-substituted polythiophene (poly(3-alkylthiophene); P3AT) variants such that the effects of straight (hexyl and decyl) and branched (2-ethylhexyl) side chains (with and without S atoms) on their thin-film morphologies and crystalline states could be investigated. P3ATTs with linear alkylthio side chains (P3HTT, hexylthio; P3DTT, decylthio) did not attain the expected higher organic field-effect transistor (OFET) mobilities with respect to P3HT (hexyl) and P3DT (decyl) mainly due to their lower regioregularity (76-78%), although P3ATTs exhibit an enhanced tendency for aggregation and compact molecular packing, as indicated by the red-shifting of the absorption spectra and the shortening of the π-π stacking distance, respectively. Moreover, the loss of regioregularity issue can be solved by introducing more soluble 2-ethylhexylthio branched side chains to form poly[3-(2-ethylhexylthio)thiophene] (P3EHTT), which provides enhanced crystallinity and efficient charge mobility (increased by up to a factor of 3) with respect to the poly(2-ethylhexylthiophene) (P3EHT) without S atoms in the side moieties. This study demonstrates that the presence of side chain alkylthio structural motifs with nonbonded interactions in polythiophene semiconductors has a beneficial impact on the molecular conformation, morphologies, structural packing, and charge transport in OFET devices.

4.
ACS Appl Mater Interfaces ; 12(29): 33014-33027, 2020 Jul 22.
Article En | MEDLINE | ID: mdl-32536156

The development of a π-conjugated polymer with hydrogen-bonding moieties has aroused great attention because of the improved molecular stacking and the hydrogen-bonding network. In this study, PDPPTVT (diketopyrrolopyrrole-thiophenevinylenethiophene) and PDPPSe (diketopyrrolopyrrole-selenophene) alkylated with a carbosilane (SiC8) side chain and poly(acryl amide) (PAM)-incorporated alkyl side chain were prepared, and their structure-performance and structure-stretchability correlation were evaluated. By incorporating the DPPTVT backbone and 0, 5, 10, or 20% PAM-incorporated alkyl side chain, the µh value could reach 2.0, 0.97, 0.74, and 0.42 cm2 V-1 s-1, respectively (P1 to P4). The polymer with the PDPPSe backbone and 5% PAM-incorporated alkyl side-chain (P5) exhibited the maximum µh value of 0.96 cm2 V-1 s-1. By extending the PAM moiety from the backbone with alkyl spacers, the solid-state packing and edge-on orientation can be properly maintained. Surprisingly, the PAM-incorporated alkyl side-chain can provide a hydrogen-bonding network serving as sacrificial bonding to mechanical deformation. Therefore, the relevant changes in the crystallographic parameters including the crystalline size and the in-plane π-π stacking distance with a 100% external strain were less than 4 and 0.8%, respectively, from P1 to P3. Therefore, P3 achieved an excellent stretchability while maintaining its molecular orientation and charge-transporting performance. Even with 100% external strain, P3 still provided an orthogonal µh over 0.1 cm2 V-1 s-1. Moreover, by substituting the TVT moiety with the Se moiety, the ductility of the backbone can be further increased when the elastic modulus decreases from 0.80 to 0.36 GPa for P2 to P5. The achieved high µh retention is over 20% after 500 stretching-releasing cycles with a 60% external strain perpendicular to the channel direction for the polymer composed of PDPPSe and 5% PAM content. The results manifest that our newly designed DPP with the PAM-incorporated alkyl side chain provides a promising approach to promote the intrinsic stretchability of the π-conjugated polymers.

5.
Macromol Rapid Commun ; 41(11): e2000148, 2020 Jun.
Article En | MEDLINE | ID: mdl-32364289

Chain-end-functionalized poly(3-hexylthiophene)s (P3HTs) with benzyl alcohol (─PhCH2 OH), phenol (─PhOH), and benzoic acid (─PhCOOH) groups are directly synthesized based on the Negishi catalyst-transfer polycondensation method utilizing the zincate complex of t Bu4 ZnLi2 . In this system, neither protection nor deprotection steps are required, and also providing a living polymerization system to control the molecular weight while maintaining a low molar mass dispersity (ÐM ) of the obtained P3HT derivatives. Indeed, the chain-end-functionalized P3HTs can be synthesized along with controlled number-average molecular weights (Mn = 5100-20 000), low ÐM (1.06-1.14), and high chain-end functionality (Fn = 46-86%). The Fn values for the alcohol and phenol groups are found to be high (86% for ─PhCH2 OH and 71% for ─PhOH based on 1 H NMR, respectively), as also confirmed by matrix-assisted laser desorption/ionization time of flight mass spectroscopy. The easily synthesizable chain-end-functionalized P3HTs will be applicable for the facile synthesis of block and branched polymers containing P3HT as well as its related semiconducting polymer segments.


Organometallic Compounds/chemistry , Thiophenes/chemical synthesis , Zinc/chemistry , Benzoic Acid/chemistry , Benzyl Alcohol/chemistry , Catalysis , Molecular Structure , Phenols/chemistry , Polymerization , Thiophenes/chemistry
6.
J Nippon Med Sch ; 72(6): 387-90, 2005 Dec.
Article En | MEDLINE | ID: mdl-16415520

We report an asymptomatic female with Fabry disease immunohistochemically diagnosed by renal biopsy. She was initially diagnosed as having nephrotic syndrome, and renal biopsy was performed for pathological diagnosis. The renal specimen revealed non-specific findings (minor glomerular abnormalities) for nephrotic syndrome. Numerous laminated bodies in glomerular epithelial cells in electron microscopic findings and accumulations of ceramidetrihexoside immunohistochemically were observed and she was diagnosed with Fabry disease. However, no other laboratory data or clinical findings supported the diagnosis of Fabry disease. Since the efficacy of recombinant human alpha-galactosidase replacement therapy in this disease has been reported, whether enzyme replacement therapy for subclinical Fabry female patients is indicated or not is an important issue.


Fabry Disease/drug therapy , Heterozygote , alpha-Galactosidase/therapeutic use , Adolescent , Biopsy , Fabry Disease/diagnosis , Fabry Disease/genetics , Female , Galactosylgalactosylglucosylceramidase/urine , Humans , Kidney/pathology
...