Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 12503, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27527664

RESUMEN

The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx(-/-) mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration.


Asunto(s)
Anillo Fibroso/fisiología , Proteínas de Homeodominio/metabolismo , Disco Intervertebral/fisiología , Regeneración , Adulto , Animales , Anillo Fibroso/metabolismo , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Disco Intervertebral/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Adulto Joven
2.
PLoS Genet ; 12(7): e1006167, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27415617

RESUMEN

Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO) mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs) exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs), in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Metilación de ADN , ADN Metiltransferasa 3A , Epigénesis Genética , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteína MioD/metabolismo , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , Regeneración , Tomografía Computarizada por Rayos X
3.
J Orthop Sci ; 19(1): 172-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166359

RESUMEN

BACKGROUND: Mohawk (Mkx) is a homeodomain-containing transcription factor that is expressed in various mesoderm-derived tissues, particularly in developing tendons. In this study, we investigate the exact expression pattern and functions of Mkx in forelimbs. METHODS: We analyzed the forelimbs of Mkx knockout mice [from embryonic day (E) 18.5 to postnatal day (P) 28 weeks] by using knocked-in Venus signals, Masson trichrome staining, and hematoxylin and eosin (H&E) staining. RESULTS: We detected Venus signals in forelimb tendons, pulleys, and volar plates (VPs) in P21 mice. In-depth histological analysis showed that compared to the wild-type mice, the Mkx knockout mice showed significant hypoplasia in the flexor digitorum profundus tendons from E18.5. The VPs and pulleys appeared normal until P0; however, by P14, they became increasingly thicker in Mkx-null mice compared to wild-type mice. The fiber alignment was particularly disrupted in VPs of Mkx-null mice. CONCLUSIONS: These results suggest that Mkx is an important regulator of the differentiation of VPs and pulleys, as well as of tendon differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Morfogénesis/genética , Placa Palmar/crecimiento & desarrollo , ARN Mensajero/genética , Tendones/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Diferenciación Celular , Modelos Animales de Enfermedad , Miembro Anterior , Técnicas de Inactivación de Genes , Proteínas de Homeodominio/biosíntesis , Inmunohistoquímica , Ratones , Ratones Noqueados , Placa Palmar/patología , Fenotipo , Tendones/patología , Transcripción Genética
4.
Mech Dev ; 130(11-12): 519-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23892084

RESUMEN

Lysine methylation of the histone tail is involved in a variety of biological events. G9a and GLP are known as major H3-K9 methyltransferases and contribute to transcriptional silencing. The functions of these genes in organogenesis remain largely unknown. Here, we analyzed the phenotypes of cardiomyocyte specific GLP knockout and G9a knockdown (GLP-KO/G9a-KD) mice. The H3-K9 di-methylation level decreased markedly in the nuclei of the cardiomyocytes of GLP-KO/G9a-KD mice, but not single G9a or GLP knockout mice. In addition, GLP-KO/G9a-KD mice showed neonatal lethality and severe cardiac defects (atrioventricular septal defects, AVSD). We also showed that hypoplasia in the atrioventricular cushion, which is a main part of the atrioventricular septum, caused AVSD. Expression analysis revealed downregulation of 2 AVSD related genes and upregulation of several non-cardiac specific genes in the hearts of GLP-KO/G9a-KD mice. These data indicate that G9a and GLP are required for sufficient H3-K9 di-methylation in cardiomyocytes and regulation of expression levels in multiple genes. Moreover, our findings show that G9a and GLP have an essential role in normal morphogenesis of the atrioventricular septum through regulation of the size of the atrioventricular cushion.


Asunto(s)
Tabique Interatrial/enzimología , Defectos de los Tabiques Cardíacos/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Morfogénesis/genética , Animales , Tabique Interatrial/embriología , Tabique Interatrial/patología , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Ingeniería Genética , Defectos de los Tabiques Cardíacos/embriología , Defectos de los Tabiques Cardíacos/enzimología , Defectos de los Tabiques Cardíacos/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Transducción de Señal
5.
PLoS Genet ; 9(1): e1003132, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326237

RESUMEN

Mastermind-like 1 (MAML1) is a transcriptional co-activator in the Notch signaling pathway. Recently, however, several reports revealed novel and unique roles for MAML1 that are independent of the Notch signaling pathway. We found that MAML1 enhances the transcriptional activity of runt-related transcription factor 2 (Runx2), a transcription factor essential for osteoblastic differentiation and chondrocyte proliferation and maturation. MAML1 significantly enhanced the Runx2-mediated transcription of the p6OSE2-Luc reporter, in which luciferase expression was controlled by six copies of the osteoblast specific element 2 (OSE2) from the Runx2-regulated osteocalcin gene promoter. Interestingly, a deletion mutant of MAML1 lacking the N-terminal Notch-binding domain also enhanced Runx2-mediated transcription. Moreover, inhibition of Notch signaling did not affect the action of MAML1 on Runx2, suggesting that the activation of Runx2 by MAML1 may be caused in a Notch-independent manner. Overexpression of MAML1 transiently enhanced the Runx2-mediated expression of alkaline phosphatase, an early marker of osteoblast differentiation, in the murine pluripotent mesenchymal cell line C3H10T1/2. MAML1(-/-) embryos at embryonic day 16.5 (E16.5) had shorter bone lengths than wild-type embryos. The area of primary spongiosa of the femoral diaphysis was narrowed. At E14.5, extended zone of collagen type II alpha 1 (Col2a1) and Sox9 expression, markers of chondrocyte differentiation, and decreased zone of collagen type X alpha 1 (Col10a1) expression, a marker of hypertrophic chondrocyte, were observed. These observations suggest that chondrocyte maturation was impaired in MAML1(-/-) mice. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.


Asunto(s)
Desarrollo Óseo/genética , Condrocitos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Desarrollo Embrionario/genética , Proteínas Nucleares , Factores de Transcripción , Animales , Diferenciación Celular , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Colágeno Tipo II/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocalcina/genética , Osteocalcina/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 138(9): 1771-82, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21447557

RESUMEN

In general, cell proliferation and differentiation show an inverse relationship, and are regulated in a coordinated manner during development. Embryonic cardiomyocytes must support embryonic life by functional differentiation such as beating, and proliferate actively to increase the size of the heart. Therefore, progression of both proliferation and differentiation is indispensable. It remains unknown whether proliferation and differentiation are related in these embryonic cardiomyocytes. We focused on abnormal phenotypes, such as hyperproliferation, inhibition of differentiation and enhanced expression of cyclin D1 in cardiomyocytes of mice with mutant jumonji (Jmj, Jarid2), which encodes the repressor of cyclin D1. Analysis of Jmj/cyclin D1 double mutant mice showed that Jmj was required for normal differentiation and normal expression of GATA4 protein through cyclin D1. Analysis of transgenic mice revealed that enhanced expression of cyclin D1 decreased GATA4 protein expression and inhibited the differentiation of cardiomyocytes in a CDK4/6-dependent manner, and that exogenous expression of GATA4 rescued the abnormal differentiation. Finally, CDK4 phosphorylated GATA4 directly, which promoted the degradation of GATA4 in cultured cells. These results suggest that CDK4 activated by cyclin D1 inhibits differentiation of cardiomyocytes by degradation of GATA4, and that initiation of Jmj expression unleashes the inhibition by repression of cyclin D1 expression and allows progression of differentiation, as well as repression of proliferation. Thus, a Jmj-cyclin D1 pathway coordinately regulates proliferation and differentiation of cardiomyocytes.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Ciclina D1/fisiología , Corazón/embriología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Ciclina D1/genética , Embrión de Mamíferos , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Corazón/fisiología , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2 , Transducción de Señal , Factores de Tiempo
7.
J Biol Chem ; 284(2): 733-9, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19010785

RESUMEN

Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.


Asunto(s)
Ciclina D1/metabolismo , Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Ciclina D1/genética , Regulación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/química , Histonas/genética , Humanos , Metilación , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo
8.
Biochem Biophys Res Commun ; 348(4): 1383-8, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16919240

RESUMEN

Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.


Asunto(s)
Células Clonales , Células Madre Multipotentes/citología , Mioblastos/citología , Adulto , Proteínas de Unión al ADN/genética , Femenino , Humanos , Cariotipificación , Células Madre Multipotentes/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA