Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Adv Exp Med Biol ; 1435: 315-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175481

RESUMEN

Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.


Asunto(s)
Clostridioides difficile , Clostridioides , Transporte Biológico , Endocitosis , Conocimiento
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958801

RESUMEN

The use of animal models of human disease is critical for furthering our understanding of disease mechanisms, for the discovery of novel targets for treatment, and for translational research. This Special Topic entitled "Animal Models of Human Disease" aimed to collect state-of-the-art primary research studies and review articles from international experts and leading groups using animal models to study human diseases. Submissions were welcomed on a wide range of animal models and pathologies, including infectious disease, acute injury, regeneration, cancer, autoimmunity, degenerative and chronic disease. Seven participating MDPI journals supported the Special Topic, namely: Biomedicines, Cells, Current Issues in Molecular Biology, Diagnostics, Genes, the International Journal of Molecular Sciences, and the International Journal of Translational Medicine. In total, 46 papers were published in this Special Topic, with 37 full length original research papers, 2 research communications and 7 reviews. These contributions cover a wide range of clinically relevant, translatable, and comparative animal models, as well as furthering understanding of fundamental sciences, covering topics on physiological processes, on degenerative, inflammatory, infectious, autoimmune, neurological, metabolic, heamatological, hormonal and mitochondrial disorders, developmental processes and diseases, cardiology, cancer, trauma, stress, and ageing.


Asunto(s)
Enfermedades Transmisibles , Enfermedades Mitocondriales , Neoplasias , Animales , Humanos , Publicaciones , Investigación Biomédica Traslacional , Modelos Animales , Neoplasias/genética
3.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37665326

RESUMEN

Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.


Asunto(s)
Apoptosis , Vesículas Extracelulares , Humanos , Células HeLa , Muerte Celular , ARN Interferente Pequeño
4.
Artículo en Inglés | MEDLINE | ID: mdl-35898167

RESUMEN

Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Distribución Tisular , Vesículas Extracelulares/metabolismo , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
5.
Clin Sci (Lond) ; 136(20): 1439-1447, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36268783

RESUMEN

This perspective considers the benefits of the potential future use of the cell permeant calpain inhibitor, calpeptin, as a drug to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recent work has reported calpeptin's capacity to inhibit entry of the virus into cells. Elsewhere, several drugs, including calpeptin, were found to be able to inhibit extracellular vesicle (EV) biogenesis. Unsurprisingly, because of similarities between viral and EV release mechanisms, calpeptin has also been shown to inhibit viral egress. This approach, identifying calpeptin, through large-scale screening studies as a candidate drug to treat COVID-19, however, has not considered the longer term likely benefits of calpain inhibition, post-COVID-19. This perspective will reflect on the capacity of calpeptin for treating long COVID by inhibiting the overproduction of neutrophil extracellular traps potentially damaging lung cells and promoting clotting, together with limiting associated chronic inflammation, tissue damage and pulmonary fibrosis. It will also reflect on the tolerated and detrimental in vivo side-effects of calpain inhibition from various preclinical studies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , Calpaína , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
6.
Biochem Biophys Res Commun ; 626: 192-199, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35994829

RESUMEN

Extra Low-frequency Magnetic Fields (ELF-MFs) significantly enhance cellular uptake of methotrexate by inducing transient plasma membrane pores/damage. This enhanced 'dose loading' of methotrexate via the electromagnetically induced membrane pores leads to similar outcomes as the normal control while using significantly smaller therapeutic doses in vitro when compared to non-ELF-MF treated control. Approximately 10% of the typical therapeutic dose yielded similar results when used with ELF-MF. ELF-MFs increase PC12, THP-1 and HeLa proliferation in vitro (120% of the control). Analysis of adherent cells demonstrate significantly less migration towards an induced scratch injury (20 µm in 24 h when compared to a control). Our results suggest an important role for the use of ELF-MFs in the treatment of tumours that opens some new and exciting possibilities including using smaller therapeutic doses of chemotherapeutic agents and disrupting tumour metastasis.


Asunto(s)
Metotrexato , Neoplasias , Línea Celular , Membrana Celular , Campos Electromagnéticos , Humanos , Campos Magnéticos , Metotrexato/farmacología , Neoplasias/tratamiento farmacológico
7.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955829

RESUMEN

PADs are a group of calcium-dependent enzymes that play key roles in inflammatory pathologies and have diverse roles in cancers. PADs cause irreversible post-translational modification of arginine to citrulline, leading to changes in protein function in different cellular compartments. PAD isozyme diversity differs throughout phylogeny in chordates, with five PAD isozymes in mammals, three in birds, and one in fish. While the roles for PADs in various human cancers are mounting (both in regards to cancer progression and epigenetic regulation), investigations into animal cancers are scarce. The current pilot-study therefore aimed at assessing PAD isozymes in a range of animal cancers across the phylogeny tree. In addition, the tissue samples were assessed for total protein deimination and histone H3 deimination (CitH3), which is strongly associated with human cancers and also indicative of gene regulatory changes and neutrophil extracellular trap formation (NETosis). Cancers were selected from a range of vertebrate species: horse, cow, reindeer, sheep, pig, dog, cat, rabbit, mink, hamster, parrot, and duck. The cancers chosen included lymphoma, kidney, lung, testicular, neuroendocrine, anaplastic, papilloma, and granulosa cell tumour. Immunohistochemical analysis revealed that CitH3 was strongly detected in all of the cancers assessed, while pan-deimination detection was overall low. Both PAD2 and PAD3 were the most predominantly expressed PADs across all of the cancers assessed, while PAD1, PAD4, and PAD6 were overall expressed at lower, albeit varying, levels. The findings from this pilot study provide novel insights into PAD-mediated roles in different cancers across a range of vertebrate species and may aid in the understanding of cancer heterogeneity and cancer evolution.


Asunto(s)
Citrulinación , Neoplasias , Animales , Perros , Epigénesis Genética , Histonas/metabolismo , Caballos , Humanos , Isoenzimas/metabolismo , Mamíferos/metabolismo , Neoplasias/genética , Proyectos Piloto , Procesamiento Proteico-Postraduccional , Desiminasas de la Arginina Proteica/metabolismo , Conejos , Ovinos , Porcinos , Vertebrados/metabolismo
8.
FEMS Microbiol Rev ; 46(1)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34448857

RESUMEN

Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.


Asunto(s)
Comunicación Celular , Exosomas , Vesículas Extracelulares , Animales , Interacciones Microbiota-Huesped , Inmunidad Innata
9.
Front Cell Infect Microbiol ; 12: 1046681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590580

RESUMEN

Introduction: Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi, which uses blood-feeding triatomine bugs as a vector to finally infect mammalian hosts. Upon entering the host, the parasite needs to effectively evade the attack of the complement system and quickly invade cells to guarantee an infection. In order to accomplish this, T. cruzi expresses different molecules on its surface and releases extracellular vesicles (EVs). Methods: Here, we have selected a population of epimastigotes (a replicative form) from T. cruzi through two rounds of exposure to normal human serum (NHS), to reach 30% survival (2R population). This 2R population was characterized in several aspects and compared to Wild type population. Results: The 2R population had a favored metacyclogenesis compared with wild-type (WT) parasites. 2R metacyclic trypomastigotes had a two-fold increase in resistance to complementmediated lysis and were at least three times more infective to eukaryotic cells, probably due to a higher GP82 expression in the resistant population. Moreover, we have shown that EVs from resistant parasites can transfer the invasive phenotype to the WT population. In addition, we showed that the virulence phenotype of the selected population remains in the trypomastigote form derived from cell culture, which is more infective and also has a higher rate of release of trypomastigotes from infected cells. Conclusions: Altogether, these data indicate that it is possible to select parasites after exposure to a particular stress factor and that the phenotype of epimastigotes remained in the infective stage. Importantly, EVs seem to be an important virulence fator increasing mechanism in this context of survival and persistence in the host.


Asunto(s)
Enfermedad de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Animales , Humanos , Proteínas Protozoarias/genética , Enfermedad de Chagas/parasitología , Diferenciación Celular , Proteínas del Sistema Complemento , Fenotipo , Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo
10.
Urol Oncol ; 39(8): 455-470, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33934962

RESUMEN

Microfluidic systems aim to detect sample matter quickly with high sensitivity and resolution, on a small scale. With its increased use in medicine, the field is showing significant promise in prostate cancer diagnosis and management due, in part, to its ability to offer point-of-care testing. This review highlights some of the research that has been undertaken in respect of prostate cancer and microfluidics. Firstly, this review considers the diagnosis of prostate cancer through use of microfluidic systems and analyses the detection of prostate specific antigen, proteins, and circulating tumor cells to highlight the scope of current advancements. Secondly, this review analyses progressions in the understanding of prostate cancer physiology and considers techniques used to aid treatment of prostate cancer, such as the creation of a micro-environment. Finally, this review highlights potential future roles of microfluidics in assisting prostate cancer, such as in exosomal analysis. In conclusion, this review shows the vast scope and application of microfluidic systems and how these systems will ensure advancements to future prostate cancer management.


Asunto(s)
Dispositivos Laboratorio en un Chip/normas , Microfluídica/métodos , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata/diagnóstico , Microambiente Tumoral , Humanos , Masculino , Neoplasias de la Próstata/sangre
11.
Curr Atheroscler Rep ; 22(11): 70, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006059
14.
Clin Sci (Lond) ; 134(12): 1301-1304, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32542396

RESUMEN

The novel strain of coronavirus that appeared in 2019, SARS-CoV-2, is the causative agent of severe respiratory disease, COVID-19, and the ongoing pandemic. As for SARS-CoV that caused the SARS 2003 epidemic, the receptor on host cells that promotes uptake, through attachment of the spike (S) protein of the virus, is angiotensin-converting enzyme 2 (ACE2). In a recent article published by Batlle et al. (Clin. Sci. (Lond.) (2020) 134, 543-545) it was suggested that soluble recombinant ACE2 could be used as a novel biological therapeutic to intercept the virus, limiting the progression of infection and reducing lung injury. Another way, discussed here, to capture SARS-CoV-2, as an adjunct or alternative, would be to use ACE2+-small extracellular vesicles (sEVs). A competitive inhibition therapy could therefore be developed, using sEVs from engineered mesenchymal stromal/stem cells (MSCs), overexpressing ACE2.


Asunto(s)
Infecciones por Coronavirus , Vesículas Extracelulares , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Angiotensinas , Betacoronavirus , COVID-19 , Humanos , Pandemias , Peptidil-Dipeptidasa A , Neumonía Viral , SARS-CoV-2
15.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098295

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive adult brain tumour with poor prognosis. Roles for peptidylarginine deiminases (PADs) in GBM have recently been highlighted. Here, two GBM cell lines were treated with PAD2, PAD3 and PAD4 isozyme-specific inhibitors. Effects were assessed on extracellular vesicle (EV) signatures, including EV-microRNA cargo (miR21, miR126 and miR210), and on changes in cellular protein expression relevant for mitochondrial housekeeping (prohibitin (PHB)) and cancer progression (stromal interaction molecule 1 (STIM-1) and moesin), as well as assessing cell invasion. Overall, GBM cell-line specific differences for the three PAD isozyme-specific inhibitors were observed on modulation of EV-signatures, PHB, STIM-1 and moesin protein levels, as well as on cell invasion. The PAD3 inhibitor was most effective in modulating EVs to anti-oncogenic signatures (reduced miR21 and miR210, and elevated miR126), to reduce cell invasion and to modulate protein expression of pro-GBM proteins in LN229 cells, while the PAD2 and PAD4 inhibitors were more effective in LN18 cells. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins relating to cancer, metabolism and inflammation differed between the two GBM cell lines. Our findings highlight roles for the different PAD isozymes in the heterogeneity of GBM tumours and the potential for tailored PAD-isozyme specific treatment.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 3/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Vesículas Extracelulares/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prohibitinas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 3/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
16.
J Extracell Vesicles ; 9(1): 1697124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32002165

RESUMEN

This study sought to measure medium-sized extracellular vesicles (mEVs) in plasma, when patients have low Plasmodium falciparum early in infection. We aimed to define the relationship between plasma mEVs and: (i) parasitaemia, (ii) period from onset of malaria symptoms until seeking medical care (patient delay, PD), (iii) age and (iv) gender. In this cross-sectional study, n = 434 patients were analysed and Nanosight Tracking Analysis (NTA) used to quantify mEVs (vesicles of 150-500 nm diameter, isolated at 15,000 × g, ß-tubulin-positive and staining for annexin V, but weak or negative for CD81). Overall plasma mEV levels (1.69 × 1010 mEVs mL-1) were 2.3-fold higher than for uninfected controls (0.51 × 1010 mEVs mL-1). Divided into four age groups, we found a bimodal distribution with 2.5- and 2.1-fold higher mEVs in infected children (<11 years old [yo]) (median:2.11 × 1010 mEVs mL-1) and the elderly (>45 yo) (median:1.92 × 1010 mEVs mL-1), respectively, compared to uninfected controls; parasite density varied similarly with age groups. There was a positive association between mEVs and parasite density (r = 0.587, p < 0.0001) and mEVs were strongly associated with PD (r = 0.919, p < 0.0001), but gender had no effect on plasma mEV levels (p = 0.667). Parasite density was also exponentially related to patient delay. Gender (p = 0.667) had no effect on plasma mEV levels. During periods of low parasitaemia (PD = 72h), mEVs were 0.93-fold greater than in uninfected controls. As 75% (49/65) of patients had low parasitaemia levels (20-500 parasites µL-1), close to the detection limits of microscopy of Giemsa-stained thick blood films (5-150 parasites µL-1), mEV quantification by NTA could potentially have early diagnostic value, and raises the potential of Pf markers in mEVs as early diagnostic targets.

17.
Artículo en Inglés | MEDLINE | ID: mdl-31552202

RESUMEN

Membrane vesicles (MVs) released from bacteria participate in cell communication and host-pathogen interactions. Roles for MVs in antibiotic resistance are gaining increased attention and in this study we investigated if known anti-bacterial effects of cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, could be in part attributed to effects on bacterial MV profile and MV release. We found that CBD is a strong inhibitor of MV release from Gram-negative bacteria (E. coli VCS257), while inhibitory effect on MV release from Gram-positive bacteria (S. aureus subsp. aureus Rosenbach) was negligible. When used in combination with selected antibiotics, CBD significantly increased the bactericidal action of several antibiotics in the Gram-negative bacteria. In addition, CBD increased antibiotic effects of kanamycin in the Gram-positive bacteria, without affecting MV release. CBD furthermore changed protein profiles of MVs released from E. coli after 1 h CBD treatment. Our findings indicate that CBD may pose as a putative adjuvant agent for tailored co-application with selected antibiotics, depending on bacterial species, to increase antibiotic activity, including via MV inhibition, and help reduce antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Cannabidiol/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Vesículas Secretoras/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Sinergismo Farmacológico , Viabilidad Microbiana/efectos de los fármacos
18.
Artículo en Inglés | MEDLINE | ID: mdl-31316918

RESUMEN

Outer membrane and membrane vesicles (OMV/MV) are released from bacteria and participate in cell communication, biofilm formation and host-pathogen interactions. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that catalyze post-translational deimination/citrullination of proteins, causing structural and functional changes in target proteins. PADs also play major roles in the regulation of eukaryotic extracellular vesicle release. Here we show phylogenetically conserved pathways of PAD-mediated OMV/MV release in bacteria and describe deiminated/citrullinated proteins in E. coli and their derived OMV/MVs. Furthermore, we show that PAD inhibitors can be used to effectively reduce OMV/MV release, both in Gram-negative and Gram-positive bacteria. Importantly, this resulted in enhanced antibiotic sensitivity of both E. coli and S. aureus to a range of antibiotics tested. Our findings reveal novel strategies for applying pharmacological OMV/MV-inhibition to reduce antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Membranas/efectos de los fármacos , Desiminasas de la Arginina Proteica/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Interacciones Huésped-Patógeno , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/química , Procesamiento Proteico-Postraduccional , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
19.
Front Physiol ; 10: 282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941062

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS: Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS: Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION: Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.

20.
Transl Oncol ; 12(3): 513-522, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30597288

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126; these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...