Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 18.
Article En | MEDLINE | ID: mdl-35455489

Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.

2.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article En | MEDLINE | ID: mdl-35160569

The objective of this study was to improve the dissolution and solubility of dexibuprofen (DEX) using hydroxypropyl beta cyclodextrin (HPßCD) inclusion complexes and also to evaluate the effect of presence of hydrophilic polymers on solubilization efficiency of HPßCD. Three different methods (physical trituration, kneading and solvent evaporation) were used to prepare binary inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug release was observed with the kneading (KN) method at a DEX/HPßCD (1:4) weight ratio. The addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0, 10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPßCD significantly. Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and release rate of DEX.

3.
Pharmaceutics ; 13(8)2021 Aug 23.
Article En | MEDLINE | ID: mdl-34452276

The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.

4.
Molecules ; 26(9)2021 Apr 24.
Article En | MEDLINE | ID: mdl-33923335

Wound-healing is complicated process that is affected by many factors, especially bacterial infiltration at the site and not only the need for the regeneration of damaged tissues but also the requirement for antibacterial, anti-inflammatory, and analgesic activity at the injured site. The objective of the present study was to develop and evaluate the natural essential oil-containing nanofiber (NF) mat with enhanced antibacterial activity, regenerative, non-cytotoxic, and wound-healing potential. Clove essential oil (CEO) encapsulated in chitosan and poly-ethylene oxide (PEO) polymers to form NFs and their morphology was analyzed using scanning electron microscopy (SEM) that confirmed the finest NFs prepared with a diameter of 154 ± 35 nm. The successful incorporation of CEO was characterized by Fourier transform infra-red spectroscopy (FTIR) and X-ray diffractometry (XRD). The 87.6 ± 13.1% encapsulation efficiency and 8.9 ± 0.98% loading of CEO was observed. A total of 79% release of CEO was observed in acidic pH 5.5 with 117% high degree of swelling. The prepared NF mat showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and non-cytotoxic behavior against human fibroblast cell lines and showed good wound-healing potential.


Chitosan/pharmacology , Clove Oil/pharmacology , Syzygium/chemistry , Wound Healing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Cell Line , Chitosan/chemistry , Clove Oil/chemistry , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Fibroblasts/drug effects , Humans , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
5.
Pharmaceutics ; 13(1)2021 Jan 04.
Article En | MEDLINE | ID: mdl-33406587

Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were -26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film's disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.

6.
Pak J Pharm Sci ; 33(1(Supplementary)): 299-306, 2020 Jan.
Article En | MEDLINE | ID: mdl-32122862

The present study was designed to develop novel lipid microparticles in order to improve solubility, dissolution and bioavailability of a lipophilic drug of BCS class II, lamotrigine. For that purpose, increase in solubility of the model drug was investigated using different lipids and the promising lipids were further used for the fabrication of microparticles. Solid lipid (GMS) and liquid lipid (olive oil) were used along with an emulsifier (Tween 80) and a stabilizer (Poloxamer 188) to prepare mircoparticles by melt emulsification method. Prepared formulations were characterized for physicochemical properties such as solubility, particle size, zeta potential, polydispersity index and entrapment efficiency. In vitro dissolution studies were carried out in 0.01 N HCl for 24 h. The findings provided that the solubility of lamotrigine was reasonably increased in GMS, olive oil, Tween 80 and poloxamer 180. The lamotrigine solubility was increased 4.92 fold with G4 microparticles formulation. Size analysis revealed that the microparticles were in range of 11.1 to 178.8 µm and the zeta potential values were from -13 to -20 mV. Microparticles prepared with solid and liquid lipids exhibited satisfactory entrapment efficiency ranging from 59 to 87%. Conclusively, the outcomes of the studies suggest the appropriateness of selected ingredients for improving solubility as well as loading of lamotrigine in microparticles for its sustained and effective delivery.


Drug Carriers/chemistry , Lamotrigine/chemistry , Lipids/chemistry , Microspheres , Particle Size , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Drug Carriers/metabolism , Lamotrigine/metabolism , Lipid Metabolism , Solubility
7.
Pak J Pharm Sci ; 33(5(Supplementary)): 2301-2306, 2020 Sep.
Article En | MEDLINE | ID: mdl-33832904

Although ebastine (EBT) can impede histamine-induced skin allergic reaction and persuade long acting selective H1 receptor antagonistic effects but its poor water solubility circumscribed its clinical application. The main objective of this research work was to improve the aqueous solubility and oral bioavailability of EBT by preparing EBT-loaded bilosomes (EBT-PC-SDC-BS). A thin film hydration method was used to prepare ebastine loaded bilosomes. The prepared-formulations were optimized considering size, morphology and entrapment efficiency. The SEM images revealed regular and spherical shape of bilosomes. Average size of the prepared EBT-PC-SDC-BS was 665.8 nm and zeta potential was around-32.9 mV with 89.05 % average entrapment efficiency (EE).Importantly, the solubility of EBT in water was amplified up to 17.9 µg/ml compared to pure drug (2 µg/mL) reflecting a highest solubility increase of 751 %. In vitro drug release results of prepared EBT-PC-SDC-BS exhibited improved release behavior. Finally, it is established from the results that the EBT-PC-SDC-BS could function as a favorable nano-carrier system to improve the solubility as well as dissolution of EBT.


Bile Acids and Salts/chemistry , Butyrophenones/chemistry , Histamine H1 Antagonists/chemistry , Phosphatidylcholines/chemistry , Piperidines/chemistry , Administration, Oral , Biological Availability , Butyrophenones/administration & dosage , Butyrophenones/pharmacokinetics , Drug Compounding , Drug Liberation , Histamine H1 Antagonists/administration & dosage , Histamine H1 Antagonists/pharmacokinetics , Liposomes , Nanoparticles , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Solubility
...