Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 2(10): 4324-4334, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021447

RESUMEN

Wound healing is a dynamic and complex process that requires a suitable environment to enhance the rapid healing process. In this context, fabrications of nanofibrous materials with antibiotic and antibacterial properties are becoming extremely important. In this present work, we report on the fabrication and characterization of electro-spun cellulose ether-PVA nanofiber mats loaded with halloysite clay (HNT) and gentamicin sulfate (GS) for faster wound healing applications. The morphology of nanofiber mats was examined by SEM and TEM. The average diameter of the nanofiber mats were in the range of 325 ± 30 nm. The physicochemical characterizations were done by FT-IR and XRD, which reveal the presence of HNT and GS into the nanofibers. The incorporation of halloysite gave good mechanical strength to the nanofiber mats. Swelling studies indicated the hydrophilicity of the mats. In vitro studies revealed that HNTs are nontoxic to L929 fibroblast cells and also promote cell growth and proliferation. The antibacterial property of HNT was also studied. The slow release of GS from the nanofiber mats was observed for a period of 18 days. The in vivo wound healing studies on the wistar rats for 21 days revealed the wound healing faster within 2 weeks by the incorporation of HNT and GS into the nanofiber mats and hence these nanofiber mats show great potential in acute and chronic wound healing applications.

2.
Chemistry ; 13(20): 5862-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17444545

RESUMEN

A series of copolymers of 2-hydroxyethyl methacrylate (HEMA)/glycidyl methacrylate (GMA) and ethylene dimethacrylate (EGDM) were synthesized by frontal polymerization (FP). This study was conducted to investigate the effect of crosslink density, type and concentration of initiator, the use of a complex initiator system, porogen, and diluent on the most relevant parameters of FP, such as sustainability of the front, temperature profile, front velocity, and yield. The products were also characterized for intruded pore volume, pore-size distribution, epoxy-functionality number, and surface morphology. Higher crosslink densities (CLDs) and initiator concentration produced higher front velocities, whereas no trend in front temperature was noted. A complex initiation system was effective in stabilizing and increasing the polymerization yield. Relative to suspension polymerization (SP), FP products synthesized without a solvent were microporous, whereas micro-to-macroporous products were obtained in the presence of a solvent (for HEMA-EGDM polymers). We also present, explain, and discuss the exotic patterns observed under a microscope. We observed two basic types of spatial patterns, namely, planar and nonplanar patterns. The type of planar pattern observed under scanning electron microscopy (SEM) has a spatial impulse that appears as a loop followed by regular periodic motion in the radial and axial directions. This behavior gives rise to a repeating pattern that is a few microns thick. Also, nonplanar patterns, namely, layered concentric rings and winding staircase patterns, were observed under SEM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...