Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Reprod Immunol ; 154: 103752, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36202022

RESUMEN

Preeclampsia (PE) is a hypertensive obstetric disorder with poor prognosis for both the mother and offspring. Infants born to mothers with PE are known to be at increased risk of developing higher brain dysfunction, such as autism. However, how maternal PE can affect the environment in the fetal brain has not been fully elucidated. Here, we examined the impact of PE on the fetal brain in a mouse model of PE induced by angiotensin II (Ang II), focusing on changes in the inflammatory condition. We confirmed that pregnant mice which were continuously administered Ang II exhibited PE phenotypes, including high blood pressure, proteinuria, and fetal growth restriction. Quantitative RT-PCR analysis demonstrated that the brain of fetuses on embryonic day 17.5 (E17.5) in the Ang II-administered pregnant mice showed increased expression of cytokines, interleukin (IL)- 6, IL-17a, tumor necrosis factor-α, interferon-γ, IL-12, IL-4, and IL-10. Immunohistochemical analysis over a wide area, from the tip of the frontal lobe to the posterior cerebral end, on E17.5 revealed that the microglia in the fetal brain of the Ang II-administered group displayed higher solidity and circularity than those of the control group, indicating that the microglia had transformed to an amoeboid morphology and were activated. Our findings suggest that maternal PE may cause altered inflammatory conditions in the fetal brain, which might be associated with the pathological mechanism connecting maternal PE and brain dysfunction in the offspring.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Humanos , Femenino , Animales , Ratones , Angiotensina II/metabolismo , Citocinas/metabolismo , Microglía , Interleucina-6/metabolismo , Encéfalo
2.
Placenta ; 115: 60-69, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560329

RESUMEN

INTRODUCTION: Disturbance in placental epigenetic regulation contributes to the pathogenesis of preeclampsia (PE). Although aberrant placental DNA methylation status in PE has been thoroughly studied, the role of histone modifications, including histone methylation, in PE remains unclear. Moreover, no study has ever reported the association between PE and placental histone methylation status by focusing on histone methyltransferases. The present study aimed to investigate the possible involvement of placental epigenetic regulation by histone methylation via histone methyltransferases in the pathophysiology of PE. METHODS: Placental mRNA expression of histone methyltransferases was examined using quantitative RT-PCR. Protein expression of histone methyltransferases and histone methylation status in placentas and trophoblast cell lines were assessed by immunoblotting and immunohistochemistry. RESULTS: Expression profile of histone methyltransferases in the placentas using quantitative RT-PCR revealed that the mRNA expression levels of histone 3 lysine 4 (H3K4) methyltransferases, SETD1A and SMYD3, were significantly increased in placentas from PE patients. Immunoblotting and immunohistochemistry revealed that not only protein expression levels of SETD1A and SMYD3, but also H3K4 methylation status was increased in the trophoblasts from PE placentas. In vitro studies using HTR-8/SV-neo and BeWo cells showed that hypoxia induced the expression levels of SETD1A and SMYD3, and subsequently enhanced H3K4 methylation. Furthermore, the overexpression of SETD1A and SMYD3 in HTR-8/SV-neo cells enhanced H3K4 methylation in response to hypoxia. DISCUSSION: Our study results suggest that placental epigenetic alteration by enhanced histone H3K4 methylation through upregulated SETD1A and SMYD3 might play a role in the pathophysiological process of PE associated with hypoxia.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Hipoxia/fisiopatología , Placenta/enzimología , Preeclampsia/enzimología , Adulto , Hipoxia de la Célula , Línea Celular , Epigénesis Genética , Femenino , Histona Metiltransferasas , Humanos , Metilación , Placenta/fisiopatología , Preeclampsia/fisiopatología , Embarazo , ARN Mensajero/análisis , Trofoblastos/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA