Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Microbiol ; 77: 102418, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38159358

RESUMEN

Sensing small molecules is crucial for microorganisms to adapt their genetic programs to changes in their environment. Arrest peptides encoded by short regulatory open reading frames program the ribosomes that translate them to undergo translational arrest in response to specific metabolites. Ribosome stalling in turn controls the expression of downstream genes on the same messenger RNA by translational or transcriptional means. In this review, we present our current understanding of the mechanisms by which ribosomes translating arrest peptides sense different metabolites, such as antibiotics or amino acids, to control gene expression.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , Péptidos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
2.
Nat Commun ; 14(1): 3891, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393329

RESUMEN

Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes. This leads to a local rearrangement of the 23 S rRNA that prevents peptide bond formation and accommodation of release factors. The stalled ribosome obstructs the formation of a Rho-independent terminator structure that prevents msrD transcriptional attenuation. Erythromycin induction of msrD expression via MsrDL, is suppressed by ectopic expression of mrsD, but not by mutants which do not provide antibiotic resistance, showing correlation between MsrD function in antibiotic resistance and its action on this stalled complex.


Asunto(s)
Enfermedades del Nervio Abducens , Antibacterianos , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Acomodación Ocular
3.
Nat Chem Biol ; 19(9): 1091-1096, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322159

RESUMEN

As antimicrobial resistance threatens our ability to treat common bacterial infections, new antibiotics with limited cross-resistance are urgently needed. In this regard, natural products that target the bacterial ribosome have the potential to be developed into potent drugs through structure-guided design, provided their mechanisms of action are well understood. Here we use inverse toeprinting coupled to next-generation sequencing to show that the aromatic polyketide tetracenomycin X primarily inhibits peptide bond formation between an incoming aminoacyl-tRNA and a terminal Gln-Lys (QK) motif in the nascent polypeptide. Using cryogenic electron microscopy, we reveal that translation inhibition at QK motifs occurs via an unusual mechanism involving sequestration of the 3' adenosine of peptidyl-tRNALys in the drug-occupied nascent polypeptide exit tunnel of the ribosome. Our study provides mechanistic insights into the mode of action of tetracenomycin X on the bacterial ribosome and suggests a path forward for the development of novel aromatic polyketide antibiotics.


Asunto(s)
Antibacterianos , Policétidos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/farmacología , Péptidos/química , Policétidos/farmacología , Biosíntesis de Proteínas
4.
ACS Synth Biol ; 10(11): 2772-2783, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34677942

RESUMEN

The process of optimizing the properties of biological molecules is paramount for many industrial and medical applications. Directed evolution is a powerful technique for modifying and improving biomolecules such as proteins or nucleic acids (DNA or RNA). Mimicking the mechanism of natural evolution, one can enhance a desired property by applying a suitable selection pressure and sorting improved variants. Droplet-based microfluidic systems offer a high-throughput solution to this approach by helping to overcome the limiting screening steps and allowing the analysis of variants within increasingly complex libraries. Here, we review cases where successful evolution of biomolecules was achieved using droplet-based microfluidics, focusing on the molecular processes involved and the incorporation of microfluidics to the workflow. We highlight the advantages and limitations of these microfluidic systems compared to low-throughput methods and show how the integration of these systems into directed evolution workflows can open new avenues to discover or improve biomolecules according to user-defined conditions.


Asunto(s)
Evolución Molecular Dirigida/métodos , Animales , ADN/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , ARN/genética
5.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504068

RESUMEN

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/genética , Triptófano/química , Sustitución de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutación , Operón , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Triptófano/metabolismo
6.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294725

RESUMEN

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cetólidos/farmacología , Macrólidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Sitios de Unión/genética , Microscopía por Crioelectrón , Farmacorresistencia Microbiana/genética , Eritromicina/química , Eritromicina/farmacología , Genes Bacterianos , Cetólidos/química , Cetólidos/farmacocinética , Macrólidos/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Insercional , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/efectos de los fármacos
7.
FEMS Microbiol Rev ; 44(6): 793-803, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32717057

RESUMEN

Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.


Asunto(s)
Antiinfecciosos/química , Microscopía por Crioelectrón , Desarrollo de Medicamentos , Ribosomas/metabolismo , Farmacorresistencia Bacteriana
8.
Front Pharmacol ; 11: 532, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390853

RESUMEN

In the search for new antibiotics to combat multidrug-resistant microbes, insects offer a rich source of novel anti-infectives, including a remarkably diverse array of antimicrobial peptides (AMPs) with broad activity against a wide range of species. Larvae of the common green bottle fly Lucilia sericata are used for maggot debridement therapy, and their effectiveness in part reflects the large panel of AMPs they secrete into the wound. To investigate the activity of these peptides in more detail, we selected two structurally different proline rich peptides (Lser-PRP2 and Lser-PRP3) in addition to the α-helical peptide Lser-stomoxyn. We investigated the mechanism of anti-Escherichia coli action of the PRPs in vitro and found that neither of them interfered with protein synthesis but both were able to bind the bacterial chaperone DnaK and are therefore likely to inhibit protein folding. However, unlike Lser-stomoxyn that permeabilized the bacterial membrane by 1% at the low concentration (0.25 µM) neither of the PRPs alone was able to permeabilize E. coli membrane. In the presence of this Lser-stomoxyn concentration significant increase in anti-E. coli activity of Lser-PRP2 was observed, indicating that this peptide needs specific membrane permeabilizing agents to exert its antibacterial activity. We then examined the AMPs-treated bacterial surface and observed detrimental structural changes in the bacterial cell envelope in response to combined AMPs. The functional analysis of insect AMPs will help select optimal combinations for targeted antimicrobial therapy.

9.
Nat Microbiol ; 5(4): 653-654, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32218511

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Microbiol ; 5(4): 554-561, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32094585

RESUMEN

Polyamines are essential metabolites that play an important role in cell growth, stress adaptation and microbial virulence1-3. To survive and multiply within a human host, pathogenic bacteria adjust the expression and activity of polyamine biosynthetic enzymes in response to different environmental stresses and metabolic cues2. Here, we show that ornithine capture by the ribosome and the nascent peptide SpeFL controls polyamine synthesis in γ-proteobacteria by inducing the expression of the ornithine decarboxylase SpeF4, via a mechanism involving ribosome stalling and transcription antitermination. In addition, we present the cryogenic electron microscopy structure of an Escherichia coli ribosome stalled during translation of speFL in the presence of ornithine. The structure shows how the ribosome and the SpeFL sensor domain form a highly selective binding pocket that accommodates a single ornithine molecule but excludes near-cognate ligands. Ornithine pre-associates with the ribosome and is then held in place by the sensor domain, leading to the compaction of the SpeFL effector domain and blocking the action of release factor 1. Thus, our study not only reveals basic strategies by which nascent peptides assist the ribosome in detecting a specific metabolite, but also provides a framework for assessing how ornithine promotes virulence in several human pathogens.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/genética , Ornitina Descarboxilasa/química , Ornitina/química , Ribosomas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Modelos Moleculares , Ornitina/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Filogenia , Poliaminas/química , Poliaminas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Virulencia
11.
Biochemistry ; 58(2): 75-84, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372045

RESUMEN

The threat of bacteria resistant to multiple antibiotics poses a major public health problem requiring immediate and coordinated action worldwide. While infectious pathogens have become increasingly resistant to commercially available drugs, antibiotic discovery programs in major pharmaceutical companies have produced no new antibiotic scaffolds in 40 years. As a result, new strategies must be sought to obtain a steady supply of novel scaffolds capable of countering the spread of resistance. The bacterial ribosome is a major target for antimicrobials and is inhibited by more than half of the antibiotics used today. Recent studies showing that the ribosome is a target for several classes of ribosomally synthesized antimicrobial peptides point to ribosome-targeting peptides as a promising source of antibiotic scaffolds. In this Perspective, we revisit the current paradigm of antibiotic discovery by proposing that the bacterial ribosome can be used both as a target and as a tool for the production and selection of peptide-based antimicrobials. Turning the ribosome into a high-throughput platform for the directed evolution of peptide-based antibiotics could be achieved in different ways. One possibility would be to use a combination of state-of-the-art microfluidics and genetic reprogramming techniques, which we will review briefly. If it is successful, this strategy has the potential to produce new classes of antibiotics for treating multi-drug-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Péptidos/metabolismo , Péptidos/farmacología , Ribosomas/efectos de los fármacos , Antibacterianos/química , Bacterias/genética , Bacterias/metabolismo , Evolución Molecular Dirigida/métodos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Estudios de Asociación Genética , Ensayos Analíticos de Alto Rendimiento/métodos , Biblioteca de Péptidos , Péptidos/química , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo
12.
Life Sci Alliance ; 1(5): e201800148, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30456383

RESUMEN

Although it is known that the amino acid sequence of a nascent polypeptide can impact its rate of translation, dedicated tools to systematically investigate this process are lacking. Here, we present high-throughput inverse toeprinting, a method to identify peptide-encoding transcripts that induce ribosomal stalling in vitro. Unlike ribosome profiling, inverse toeprinting protects the entire coding region upstream of a stalled ribosome, making it possible to work with random or focused transcript libraries that efficiently sample the sequence space. We used inverse toeprinting to characterize the stalling landscapes of free and drug-bound Escherichia coli ribosomes, obtaining a comprehensive list of arrest motifs that were validated in vivo, along with a quantitative measure of their pause strength. Thanks to the modest sequencing depth and small amounts of material required, inverse toeprinting provides a highly scalable and versatile tool to study sequence-dependent translational processes.

13.
Cell Chem Biol ; 25(5): 530-539.e7, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29526712

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) internalize into susceptible bacteria using specific transporters and interfere with protein synthesis and folding. To date, mammalian PrAMPs have so far been identified only in artiodactyls. Since cetaceans are co-phyletic with artiodactyls, we mined the genome of the bottlenose dolphin Tursiops truncatus, leading to the identification of two PrAMPs, Tur1A and Tur1B. Tur1A, which is orthologous to the bovine PrAMP Bac7, is internalized into Escherichia coli, without damaging the membranes, using the inner membrane transporters SbmA and YjiL/MdM. Furthermore, like Bac7, Tur1A also inhibits bacterial protein synthesis by binding to the ribosome and blocking the transition from the initiation to the elongation phase. By contrast, Tur1B is a poor inhibitor of protein synthesis and may utilize another mechanism of action. An X-ray structure of Tur1A bound within the ribosomal exit tunnel provides a basis to develop these peptides as novel antimicrobial agents.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Animales , Cristalografía por Rayos X , Delfines , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Ribosomas/metabolismo
14.
Nat Prod Rep ; 34(7): 702-711, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28537612

RESUMEN

Covering: up to 2017The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of AMPs have been identified that pass through membranes and inhibit bacterial growth by targeting fundamental intracellular processes. One such subclass is the proline-rich antimicrobial peptides (PrAMPs) that bind to the ribosome and interfere with the process of protein synthesis. A diverse range of PrAMPs have been identified in insects, such as bees, wasps and beetles, and crustaceans, such as crabs, as well as in mammals, such as cows, sheep, goats and pigs. Mechanistically, the best-characterized PrAMPs are the insect oncocins, such as Onc112, and bovine bactenecins, such as Bac7. Biochemical and structural studies have revealed that these PrAMPs bind within the ribosomal exit tunnel with a reverse orientation compared to a nascent polypeptide chain. The PrAMPs allow initiation but prevent the transition into the elongation phase of translation. Insight into the interactions of PrAMPs with their ribosomal target provides the opportunity to further develop these peptides as novel antimicrobial agents.


Asunto(s)
Antibacterianos/síntesis química , Antiinfecciosos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Prolina/química , Animales , Antibacterianos/química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Bovinos , Escarabajos , Femenino , Pruebas de Sensibilidad Microbiana , Péptidos/metabolismo , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Ovinos , Porcinos , Avispas
15.
Nat Commun ; 7: 12026, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27380950

RESUMEN

Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.


Asunto(s)
Proteínas Bacterianas/química , Biosíntesis de Proteínas/efectos de los fármacos , Aminoacil-ARN de Transferencia/química , Ribosomas/metabolismo , Streptococcus sanguis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Eritromicina/química , Eritromicina/farmacología , Sitios Internos de Entrada al Ribosoma , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/ultraestructura , Streptococcus sanguis/efectos de los fármacos , Streptococcus sanguis/metabolismo
16.
J Mol Biol ; 428(10 Pt B): 2217-27, 2016 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-27108680

RESUMEN

In order to colonize a niche and compete for scarce resources, microorganisms have evolved means to adjust the expression levels of their biosynthetic enzymes in response to the changing levels of metabolites available to them. To do so, they often rely on transcription factors or structured RNAs that directly sense the concentration of metabolites and turn genes on or off accordingly. In some instances, however, a metabolite can be sensed by an actively translating ribosome bearing a nascent polypeptide whose specific amino acid sequence interferes with translation. These "arrest peptides" lead to the formation of stalled ribosome nascent chain complexes on the mRNA that can regulate the expression of downstream genes through transcriptional or translational mechanisms. Although this process was discovered over three and a half decades ago, the extent to which arrest peptides regulate gene expression in response to cell metabolites is unknown. Here, we examine the physical constraints imposed by the ribosome on peptide-mediated ligand sensing and review attempts to assess the diversity of arrest peptides to date. In addition, we outline a possible way forward to establish how pervasive metabolite sensing by arrest peptides is in nature.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Biosíntesis de Péptidos , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Modelos Biológicos , Ribosomas/química
17.
Nucleic Acids Res ; 44(5): 2429-38, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26792896

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) produced as part of the innate immune response of animals, insects and plants represent a vast, untapped resource for the treatment of multidrug-resistant bacterial infections. PrAMPs such as oncocin or bactenecin-7 (Bac7) interact with the bacterial ribosome to inhibit translation, but their supposed specificity as inhibitors of bacterial rather than mammalian protein synthesis remains unclear, despite being key to developing drugs with low toxicity. Here, we present crystal structures of the Thermus thermophilus 70S ribosome in complex with the first 16 residues of mammalian Bac7, as well as the insect-derived PrAMPs metalnikowin I and pyrrhocoricin. The structures reveal that the mammalian Bac7 interacts with a similar region of the ribosome as insect-derived PrAMPs. Consistently, Bac7 and the oncocin derivative Onc112 compete effectively with antibiotics, such as erythromycin, which target the ribosomal exit tunnel. Moreover, we demonstrate that Bac7 allows initiation complex formation but prevents entry into the elongation phase of translation, and show that it inhibits translation on both mammalian and bacterial ribosomes, explaining why this peptide needs to be stored as an inactive pro-peptide. These findings highlight the need to consider the specificity of PrAMP derivatives for the bacterial ribosome in future drug development efforts.


Asunto(s)
Antibacterianos/química , Péptidos Cíclicos/química , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Sitios de Unión , Unión Competitiva , Bovinos , Cristalografía por Rayos X , Eritromicina/química , Eritromicina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Heterópteros/química , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos Cíclicos/farmacología , Unión Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Especificidad de la Especie , Thermus thermophilus/química
19.
Nat Struct Mol Biol ; 22(6): 470-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25984971

RESUMEN

The increasing prevalence of multidrug-resistant pathogenic bacteria is making current antibiotics obsolete. Proline-rich antimicrobial peptides (PrAMPs) display potent activity against Gram-negative bacteria and thus represent an avenue for antibiotic development. PrAMPs from the oncocin family interact with the ribosome to inhibit translation, but their mode of action has remained unclear. Here we have determined a structure of the Onc112 peptide in complex with the Thermus thermophilus 70S ribosome at a resolution of 3.1 Å by X-ray crystallography. The Onc112 peptide binds within the ribosomal exit tunnel and extends toward the peptidyl transferase center, where it overlaps with the binding site for an aminoacyl-tRNA. We show biochemically that the binding of Onc112 blocks and destabilizes the initiation complex, thus preventing entry into the elongation phase. Our findings provide a basis for the future development of this class of potent antimicrobial agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/química , Thermus thermophilus/efectos de los fármacos
20.
Nat Commun ; 6: 6941, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903689

RESUMEN

Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner.


Asunto(s)
Bacillus subtilis , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas/genética , Ribosomas/química , Proteínas Bacterianas , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Conformación Molecular , Señales de Clasificación de Proteína/genética , ARN de Transferencia , Proteínas Ribosómicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA