Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
JSES Int ; 8(3): 451-458, 2024 May.
Article En | MEDLINE | ID: mdl-38707564

Background: The goals of this study were to optimize superior capsular reconstruction by assessing the relative fixation strength of 4 suture anchors; evaluating 3 glenoid neck locations for fixation strength and bone mineral density (BMD); determining if there is a correlation between BMD and fixation strength; and determining which portal sites have optimal access to the posterosuperior and anterosuperior glenoid neck for anchor placement. Methods: Twenty cadaveric specimens were randomized into 4 groups: all-suture anchor (FiberTak), conventional 3.0-mm knotless suture anchor (SutureTak), 3.9-mm knotless PEEK (polyetheretherketone) Corkscrew anchor, and 4.5-mm Bio-Corkscrew anchor. Each specimen was prepared with 3 anchors into the glenoid: an anterosuperior anchor, superior anchor, and posterosuperior anchor. All anchors were inserted into the superior glenoid neck 5 mm from the glenoid rim. A materials testing system performed cyclic testing (250 cycles) followed by load-to-failure testing at 12.5 mm/s. Cyclic elongation, first cycle excursion, maximum load, and stiffness were recorded. Using custom software, BMD was calculated at each anchor location. This software was also used to assess access to the posterosuperior and anterosuperior glenoid neck from standard arthroscopic portal positions. Results: There was no significant difference in cyclic elongation (P = .546), first cycle excursion (P = .476), maximum load (P = .817), or stiffness (P = .309) among glenoid anchor positions. Cyclic elongation was significantly longer in the PEEK Corkscrew group relative to the other implants (P ≤ .002). First cycle excursion was significantly greater in the FiberTak group relative to all other implants (P ≤ .008). For load-to-failure testing, the Bio-Corkscrew group achieved the highest maximum load (P ≤ .001). No other differences in cyclic or failure testing were observed between the groups. No differences in stiffness testing were observed (P = .133). The superior glenoid rim had the greatest BMD (P = .003), but there was no correlation between BMD and cyclic/load outcomes. The posterior portal (80% of specimens) and the anterior portal (60% of specimens) demonstrated the best access to the posterosuperior and anterosuperior glenoid neck, respectively. Conclusion: The 4.5-mm Bio-Corkscrew anchor provided the most robust fixation to the glenoid during superior capsular reconstruction as it demonstrated the strongest maximum load, had minimal elongation, had minimal first cycle excursion, and did not fail during cyclic testing. The superior glenoid neck had the highest BMD; however, there was no correlation between BMD or glenoid anchor location and biomechanical outcomes. The posterior portal and anterior portal provided optimal access to the posterosuperior glenoid neck and anterosuperior glenoid neck, respectively.

2.
J Orthop Res ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564320

This study aimed to compare three-dimensional (3D) proximal femoral and acetabular surface models generated from 3.0T magnetic resonance imaging (MRI) to the clinical gold standard of computed tomography (CT). Ten intact fresh-frozen cadaveric hips underwent CT and 3.0T MRI scans. The CT- and MRI-based segmented models were superimposed using a validated 3D-3D registration volume-merge method to compare them. The least surface-to-surface distance between the models was calculated by a point-to-surface calculation algorithm using a custom-written program. The variables of interest were the signed and absolute surface-to-surface distance between the paired bone models. One-sample t-tests were performed using a signed and absolute test value of 0.16 mm and 0.37 mm, respectively, based on a previous study that validated 1.5T MRI bone models by comparison with CT bone models. For the femur, the average signed and absolute surface-to-surface distance was 0.18 ± 0.09 mm and 0.30 ± 0.06 mm, respectively. There was no difference in the signed surface-to-surface distance and the 0.16 mm test value (t = 0.650, p = 0.532). However, the absolute surface-to-surface difference was less than the 0.37 mm test value (t = -4.025, p = 0.003). For the acetabulum, the average signed and absolute surface-to-surface distance was -0.06 ± 0.06 mm and 0.26 ± 0.04 mm, respectively. The signed (t = -12.569, p < 0.001) and absolute (t = -8.688, p < 0.001) surface-to-surface difference were less than the 0.16 mm and 0.37 mm test values, respectively. Our data shows that 3.0T MRI bone models are more similar to CT bone models than previously validated 1.5T MRI bone models. This is likely due to the higher resolution of the 3T data.

3.
Spine (Phila Pa 1976) ; 48(20): E355-E361, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37530119

STUDY DESIGN: This study compared hip stress among different types of lumbopelvic fusion based on finite element (FE) analysis. OBJECTIVE: We believe that the number and placement of S2 alar iliac (AI) screws and whether the screws loosen likely influence hip joint stress in the FE model. SUMMARY OF BACKGROUND DATA: Spinopelvic fixation has been shown to increase the risk of progression for hip joint osteoarthritis. The biomechanical mechanism is not well understood. We hypothesize that the rigid pelvic fixation may induce stress at adjacent joints. MATERIALS AND METHODS: A three-dimensional nonlinear FE model was constructed from the L4 vertebra to the femoral bone. From the intact model, we made four fusion models, each with different lower vertebrae instrumentation: (1) intact, (2) L4-S1 fusion, (3) L4-S2 AI screw fixation, (4) L4-S2 AI screw fixation with S2 AI screw loosening, and (5) L4-S1 and dual sacral AI screw fixation. A compressive load of 400 N was applied vertically to the L4 vertebra, followed by an additional 10 Nm bending moment about different axes to simulate either flexion, extension, left lateral bending, or right axial rotation. The distal femoral bone was completely restrained. The von Mises stress and angular motion were analyzed across the hip joints within each fusion construct model. RESULTS: Hip joint cartilage stress and range of motion increased for all postures as pelvic fixation became more rigid. The dual sacral AI screw fixation model increased stress and angular motion at the hip joint more than intact model. Our results suggest that more rigid fixation of the pelvis induces additional stress on the hip joint, which may precipitate or accelerate adjacent joint disease. CONCLUSIONS: Dual sacral AI fixation led to the highest stress while loosening of S2 AI decreased stress on the hip joint. This study illustrates that more rigid fixation among lumbosacral fusion constructs increases biomechanical stress on the hip joints.


Pedicle Screws , Spinal Fusion , Humans , Finite Element Analysis , Bone Screws , Range of Motion, Articular , Pelvis , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Biomechanical Phenomena , Hip Joint/surgery
4.
Knee ; 41: 214-220, 2023 Mar.
Article En | MEDLINE | ID: mdl-36724580

PURPOSE: Few studies exist regarding sagittal alignment describing femur morphology in navigation-aided surgery. This study investigated the three-dimensional (3D) sagittal femoral alignment of the whole femur. METHODS: Seventy-three consecutive patients (59 females, 14 males, mean age: 76.1 years), yielding 140 femurs, were included in this study. A computed-tomography-based patient-specific 3D femur model was used to define a mechanical axis-based reference plane. Proximal and distal femoral axis angles (PFA, DFA) to the reference plane were measured in 3D using custom software. PFA and DFA represent the proximal and distal inclination of the femoral anatomical axis in sagittal plane, respectively. RESULTS: PFA (10.6 ± 1.5°) was greater than DFA (2.6 ± 1.6°; P < 0.0001). DFA in females (2.3 ± 1.4°) was smaller than in males (3.9 ± 1.7°; P < 0.0001). CONCLUSION: This is the first report of measurement of femoral sagittal alignment related to both 3D anatomy and decision making of femoral flexion angle using navigation surgery for total knee arthroplasty. This report shows a robust DFA measurement that could be used as a template for femoral implants flexion angle when performing both conventional and navigated total knee arthroplasty.


Arthroplasty, Replacement, Knee , East Asian People , Femur , Osteoarthritis, Knee , Surgery, Computer-Assisted , Aged , Female , Humans , Male , Arthroplasty, Replacement, Knee/methods , Femur/diagnostic imaging , Femur/surgery , Femur/anatomy & histology , Knee Joint/diagnostic imaging , Knee Joint/surgery , Lower Extremity , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/ethnology , Osteoarthritis, Knee/surgery , Tomography, X-Ray Computed , Imaging, Three-Dimensional , Surgery, Computer-Assisted/methods
5.
Global Spine J ; 13(7): 1803-1811, 2023 Sep.
Article En | MEDLINE | ID: mdl-34736350

STUDY DESIGN: Basic Science. OBJECTIVE: Poor subchondral bone mineral density (sBMD) has been linked with subsidence of cervical interbody devices or grafts, which are traditionally placed centrally on the endplates. Considering that sBMD reflects long-term stress distributions, we hypothesize that the cervical uncovertebral joints are denser than the central endplate region. This study sought to investigate density distributions using computed tomography osteoabsorptiometry (CT-OAM). METHODS: Twelve human cervical spines from C3-C7 (60 vertebrae, 120 endplates) were imaged with CT and segmented to create 3D reconstructions. The superior and inferior endplates were isolated, and the sBMD of the whole endplate, endplate center, and uncus was evaluated using CT-OAM. Density distributions were compared across the subaxial cervical spine. RESULTS: The uncinate region of the inferior and superior endplates was significantly denser than the central endplate across all vertebral levels (P < .01). When comparing sBMD of the whole inferior and superior endplates, the superior endplate was significantly denser than the inferior endplate (P < .0001). However, the inferior uncus was denser than the superior uncus (P = .035). When assessing sBMD by vertebral level, peak densities were observed at C4 and C5, while C7 was, on average, significantly less dense than all other vertebrae. CONCLUSION: The subchondral bone of the cervical uncovertebral joints is significantly denser than the central endplates. While the superior endplate in its entirety is denser than the inferior endplate, the inverse was true for the uncovertebral joints. This study serves as a basis for future investigations of new implant designs and their implications on subsidence.

6.
Global Spine J ; 13(5): 1374-1383, 2023 Jun.
Article En | MEDLINE | ID: mdl-34313138

STUDY DESIGN: Cadaveric biomechanics study. OBJECTIVE: Subchondral bone mineral density (sBMD) reflects the long-term mineralization and distribution of stress on joints. The use of 3-dimensional (3-D) methods to evaluate sBMD, including computed tomography osteoabsorptiometry (CT-OAM), enables the assessment of density distribution with emphasis on subchondral bone. This study sought to measure the sBMD of cervical endplates using CT-OAM and correlate it to mechanical implant subsidence in a cadaveric model. METHODS: Fourteen fresh human cadaveric cervical spines were subjected to dynamic testing after single level discectomy and instrumentation using a PEEK interbody spacer. Specimens were imaged with CT 3 times: 1st) whole intact cervical spine, 2nd) after implantation, and 3 rd) after testing. These images were used to assess sBMD distributions using CT-OAM directly underneath the spacer. Subsidence was defined as the displacement of the device into the endplates. RESULTS: The observed "failure mode" was consistently recorded as subsidence, with a mean of 0.45 ± 0.36 mm and 0.40 ± 0.18 mm for the C4-5 and C6-7 levels, respectively. There were no differences by level. The experimental cyclic test showed that denser endplates experienced less deformation under the same load. CONCLUSIONS: This study achieved its stated aim of validating the use of CT-OAM as a method to analyze the sBMD of the cervical endplates. Studies such as this are providing new information on available technology such as CT-OAM, providing new tools for clinicians treating spinal conditions in need of augmentation and stabilization via interbody devices.

7.
Am J Sports Med ; 50(13): 3571-3578, 2022 11.
Article En | MEDLINE | ID: mdl-36135390

BACKGROUND: Articular step-off between the donor and recipient in osteochondral allograft transplant has been shown to alter contact pressures. Currently, commercial allograft donor selection is primarily based on simple anatomic parameters such as trochlear length, trochlear width, and tibial width. PURPOSE: To identify anatomic factors associated with optimal graft matching by using a 3-dimensional simulation model. STUDY DESIGN: Descriptive laboratory study. METHODS: Computed tomography images of 10 cadaveric trochlear specimens were obtained to generate 3-dimensional models. Circular defects were created virtually in the recipient trochleae at both superolateral (18.0 mm and 22.5 mm) and central (18.0 mm, 22.5 mm, 30.0 mm) locations. The donor models were virtually projected onto the defect models, and the most optimal graft from any location of the donor specimen was selected. Cartilage incongruity, subchondral bone incongruity, and peripheral articular step-off were calculated for each graft-defect combination. Linear regression models were generated to identify predictors of incongruity, step-off, and the effect of sulcus and sagittal angle mismatch. Akaike information criterion-driven stepwise regression models were generated to identify multivariate predictors. RESULTS: Ideal matches were found for 100% of superolateral defects but for only 15% to 53% of central defects, depending on the defect size. Multivariate stepwise regression identified laterality (odds ratio [OR], 0.54; P = .081), sulcus angle (OR, 0.79; P < .001), sagittal angle (OR, 0.83; P = .001), lateral radius of curvature (OR, 0.81; P < .001), and medial facet width (OR, 0.86; P = .155) as predictors of ideal graft matching. In central defects with proud grafts, increasing sagittal angle and sulcus angle resulted in significantly (P < .001) increased articular step-off, which became sequentially larger with defect size. CONCLUSION: Sagittal angle, sulcus angle, and lateral radius of curvature mismatch should be used to determine optimal donor allografts, especially in the setting of large (30-mm) central defects. Increasing sulcus angle and sagittal angle mismatch correlated with increasing step-off in proud grafts, whereas sulcus angle and sagittal angle inconsistently correlated with step-off in recessed grafts. CLINICAL RELEVANCE: Additional descriptive trochlear measurements should be incorporated into the algorithm for donor selection. These findings can be used to identify acceptable mismatch parameters.


Cartilage Diseases , Intra-Articular Fractures , Humans , Femur/transplantation , Knee Joint , Cartilage/transplantation , Allografts , Computers
8.
Clin Case Rep ; 10(7): e6140, 2022 Jul.
Article En | MEDLINE | ID: mdl-35903505

Dialysis-related adverse reactions can be serious and difficult to predict. In our case, nafamostat mesylate (NM) was thought to be the cause of cardiopulmonary arrest (CPA) due to NM-induced anaphylaxis but was not reflected in the allergy tests. Rare but life-threatening drawbacks occur immediately after hemodialysis initiation.

9.
Orthop J Sports Med ; 10(5): 23259671221093685, 2022 May.
Article En | MEDLINE | ID: mdl-35547608

Background: Patellar fracture after quadriceps tendon (QT) autograft harvest for anterior cruciate ligament reconstruction (ACLR) has been reported in up to 8.8% of patients. Purpose: To determine the thickness of the remaining patellar bone across the QT graft harvest location while providing clinical guidance for safely harvesting a patellar bone block when using a QT graft in ACLR. Study Design: Descriptive laboratory study. Methods: Medial and lateral QT graft boundaries were marked using a bone saw on 13 cadaveric patellae, and 3-dimensional computed tomography models were created. After the harvest of a virtual bone block with a maximum depth of 10 mm, the thickness of the remaining bone was measured across the graft harvest location in 9 zones. The thickness of the remaining bone was analyzed according to zone, graft harvest location, and patellar facet length. Risk zones were defined as <50% total patellar depth remaining. Results: We observed substantial variability in QT bone block harvest location, in which the distance between the lateral boundary of the harvest location and the lateral patellar cortex was from 21.2% to 49.2% of the axial patellar width. There was significantly less bone remaining in the lateral columns (mean ± SD, 7.56 ± 2.19 mm) compared with the medial columns (9.83 ± 2.10 mm) of the graft harvest location (P = .028). The number of risk zones was significantly associated with distance to the lateral cortical edge, with an increase in 0.59 zones with every 1-mm decrease in distance to the lateral cortex edge (b = -0.585; R 2 = 0.620; P = .001). With every 1-mm increase in the distance of the lateral cortex to the lateral graft boundary, the thickness of bone remaining in the lateral column increased by 0.412 mm (P < .001). No risk zones were encountered when the lateral boundary of the harvest location was created 18.9 mm from the lateral edge of the patella or 43% of the total patellar width from the lateral edge. Conclusion: Harvest of a more laterally based QT autograft bone block resulted in thinner remaining patellar thickness, increasing the potential of encountering a risk zone for fracture. Clinical Relevance: Care should be taken to avoid harvesting the patellar bone block too laterally during ACLR.

10.
Sci Rep ; 12(1): 4001, 2022 03 07.
Article En | MEDLINE | ID: mdl-35256723

We hypothesized that the contact area of the articular surface of the wrist joint could be evaluated using a custom-designed analytical program. The aim of the study was to compare the articular contact area of the wrist joint before and after radial shortening osteotomy for Kienböck's disease. Nine wrists of 9 patients underwent radial shortening osteotomy for Kienböck's disease. Computed tomography (CT) images of the wrist joint were reconstructed using a 3D reconstruction software package. Radioscaphoid and radiolunate joint contact areas and translation of the joint contact area from preoperative to postoperative were calculated using customized software. The mean Modified Mayo Wrist Score was significantly improved from 50.6 preoperatively to 83.3 at final follow-up (p < .001). Preoperatively, the pain was reported as severe in five wrists and moderate in four wrists, while at final follow-up, five patients were free from pain and four patients had mild pain with vigorous activity. The preoperative radioscaphoid joint contact area was 133.4 ± 49.5 mm2 and the postoperative radioscaphoid joint contact area was 156.4 ± 73.1 mm2. The preoperative radiolunate joint contact area was 194.8 ± 92.1 mm2 and the postoperative radiolunate joint contact area was 148.3 ± 97.9 mm2. The radial translation distance was 0.4 ± 1.2 mm, the dorsal translation distance was 0.6 ± 1.2 mm, and the proximal translation distance was 0.2 ± 0.4 mm. CT-based analysis revealed that the center of the contact area translated radially following radial shortening.


Osteonecrosis , Wrist Joint , Follow-Up Studies , Humans , Osteonecrosis/diagnostic imaging , Osteonecrosis/surgery , Osteotomy/adverse effects , Osteotomy/methods , Pain , Range of Motion, Articular , Wrist Joint/diagnostic imaging , Wrist Joint/surgery
11.
Sci Rep ; 12(1): 3231, 2022 02 25.
Article En | MEDLINE | ID: mdl-35217693

The purpose of this study is to evaluate the glenohumeral contact area, center of glenohumeral contact area, and center of humeral head during simulated pitching motion in collegiate baseball pitchers using four-dimensional computed tomography (4D CT). We obtained 4D CT data from the dominant and non-dominant shoulders of eight collegiate baseball pitchers during the cocking motion. CT image data of each joint were reconstructed using a 3D reconstruction software package. The glenohumeral contact area, center of glenohumeral contact area, center of humeral head, and oblateness of humeral head were calculated from 3D bone models using customized software. The center of glenohumeral contact area translated from anterior to posterior during maximum external rotation to maximum internal rotation (0.58 ± 0.63 mm on the dominant side and 0.99 ± 0.82 mm on the non-dominant side). The center of humeral head translated from posterior to anterior during maximum external rotation to maximum internal rotation (0.76 ± 0.75 mm on the dominant side and 1.21 ± 0.78 mm on the non-dominant side). The increase in anterior translation of the center of glenohumeral contact area was associated with the increase in posterior translation of the center of humeral head. Also, the increase in translation of the center of humeral head and glenohumeral contact area were associated with the increase in oblateness of the humeral head. 4D CT analyses demonstrated that the center of humeral head translated in the opposite direction to that of the center of glenohumeral contact area during external rotation to internal rotation in abduction in the dominant and non-dominant shoulders. The oblateness of the humeral head may cause this diametric translation. 4D CT scanning and the software for bone surface modeling of the glenohumeral joint enabled quantitative assessment of glenohumeral micromotion and be used for kinematic evaluation of throwing athletes.


Baseball , Shoulder Joint , Biomechanical Phenomena , Four-Dimensional Computed Tomography , Humans , Range of Motion, Articular , Rotation , Shoulder Joint/diagnostic imaging
12.
J Orthop Res ; 40(5): 1174-1181, 2022 05.
Article En | MEDLINE | ID: mdl-34192370

The purpose of this in vitro study was to quantify the bone resected from the proximal femur during hip arthroscopy using metrics generated from magnetic resonance imaging (MRI) and computed tomography (CT) reconstructed three-dimensional (3D) bone models. Seven cadaveric hemi-pelvises underwent both a 1.5 T MRI and CT scan before and following an arthroscopic proximal femoral osteochondroplasty. The images from MRI and CT were segmented to generate 3D proximal femoral surface models. A validated 3D--3D registration method was used to compare surface--to--surface distances between the 3D models before and following surgery. The new metrics of maximum height, mean height, surface area and volume, were computed to quantify bone resected during osteochondroplasty. Stability of the metrics across imaging modalities was established through paired sample t--tests and bivariate correlation. Bivariate correlation analyses indicated strong correlations between all metrics (r = 0.728--0.878) computed from MRI and CT derived models. There were no differences in the MRI- and CT-based metrics used to quantify bone resected during femoral osteochondroplasty. Preoperative- and postoperative MRI and CT derived 3D bone models can be used to quantify bone resected during femoral osteochondroplasty, without significant differences between the imaging modalities.


Femoracetabular Impingement , Arthroscopy/methods , Benchmarking , Femoracetabular Impingement/diagnostic imaging , Femoracetabular Impingement/surgery , Hip Joint/surgery , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods
13.
Arthritis Res Ther ; 23(1): 297, 2021 12 08.
Article En | MEDLINE | ID: mdl-34876212

BACKGROUND: Establishing an optimal animal model for intervertebral disc (IVD) degeneration is essential for developing new IVD therapies. The intra-articular injection of monosodium iodoacetate (MIA), which is commonly used in animal models of osteoarthritis, induces cartilage degeneration and progressive arthritis in a dose- and time-dependent manner. The purpose of this study was to determine the effect of MIA injections into rabbit IVDs on the progression of IVD degeneration evaluated by radiographic, micro-computerized tomography (micro-CT), magnetic resonance imaging (MRI), and histological analyses. METHODS: In total, 24 New Zealand White (NZW) rabbits were used in this study. Under general anesthesia, lumbar discs from L1-L2 to L4-L5 had a posterolateral percutaneous injection of MIA in contrast agent (CA) (L1-L2: CA only; L2-L3: MIA 0.01 mg; L3-L4: 0.1 mg; L4-L5: 1.0 mg; L5-L6: non-injection (NI) control). Disc height was radiographically monitored biweekly until 12 weeks after injection. Six rabbits were sacrificed at 2, 4, 8, and 12 weeks post-injection and processed for micro-CT, MRI (T2-mapping), and histological analyses. Three-dimensional (3D) disc height in five anatomical zones was evaluated by 3D reconstruction of micro-CT data. RESULTS: Disc height of MIA-injected discs (L2-L3 to L4-L5) gradually decreased time-dependently (P < 0.0001). The disc height of MIA 0.01 mg-injected discs was significantly higher than those of MIA 0.1 and 1.0 mg-injected discs (P < 0.01, respectively). 3D micro-CT analysis showed the dose- and time-dependent decrease of 3D disc height of MIA-injected discs predominantly in the posterior annulus fibrosus (AF) zone. MRI T2 values of MIA 0.1 and 1.0 mg-injected discs were significantly decreased compared to those of CA and/or NI controls (P < 0.05). Histological analyses showed progressive time- and dose-degenerative changes in the discs injected with MIA (P < 0.01). MIA induced cell death in the rabbit nucleus pulposus with a high percentage, while the percentage of cell clones was low. CONCLUSIONS: The results of this study showed, for the first time, that the intradiscal injection of MIA induced degenerative changes of rabbit IVDs in a time- and dose-dependent manner. This study suggests that MIA injection into rabbit IVDs could be used as an animal model of IVD degeneration for developing future treatments.


Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Disease Models, Animal , Intervertebral Disc/diagnostic imaging , Intervertebral Disc Degeneration/chemically induced , Intervertebral Disc Degeneration/diagnostic imaging , Iodoacetic Acid , Magnetic Resonance Imaging , Rabbits
14.
PLoS One ; 16(10): e0259001, 2021.
Article En | MEDLINE | ID: mdl-34705863

The vertebral endplate forms a structural boundary between intervertebral disc and the trabecular bone of the vertebral body. As a mechanical interface between the stiff bone and resilient disc, the endplate is the weakest portion of the vertebral-disc complex and is predisposed to mechanical failure. However, the literature concerning the bone mineral density (BMD) distribution within the spinal endplate is comparatively sparse. The objective of this study is to investigate the three-dimensional (3D) distribution of computed tomography (CT) attenuation across the lumbosacral endplate measured in Hounsfield Units (HU). A total of 308 endplates from 28 cadaveric fresh-frozen lumbosacral spines were used in this study. Each spine was CT-scanned and the resulting DICOM data was used to obtain HU values of the bone endplate. Each individual endplate surface was subdivided into five clinically-relevant topographic zones. Attenuation was analyzed by spinal levels, sites (superior or inferior endplate) and endplate region. The highest HU values were found at the S1 endplate. Comparisons between the superior and inferior endplates showed the HU values in inferior endplates were significantly higher than those in the superior endplates within the same vertebra and the HU values in endplates cranial to the disc were significantly higher than those in the endplates caudal to the disc within the same disc. Attenuation in the peripheral region was significantly higher than in the central region by 32.5%. Regional comparison within the peripheral region showed the HU values in the posterior region were significantly higher than those in the anterior region and the HU values in the left region were significantly higher than those in the right region. This study provided detailed data on the regional HU distribution across the lumbosacral endplate, which can be useful to understand causes of some endplate lesions, such as fracture, and also to design interbody instrumentation.


Intervertebral Disc/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Lumbosacral Region/pathology , Spinal Fractures/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Male , Middle Aged
15.
Sci Rep ; 11(1): 19782, 2021 10 05.
Article En | MEDLINE | ID: mdl-34611207

The aim of this study was to evaluate the joint contact area of the dominant side and that of the non-dominant side without valgus instability in symptomatic pitchers. Ten symptomatic elbow medial ulnar collateral ligament (UCL) deficient baseball pitchers participated in this study. Computed tomography (CT) data from the dominant and non-dominant elbows were obtained with and without elbow valgus stress. The CT imaging data of each elbow joint were reconstructed using a 3D reconstruction software package, and the radiocapitellar and ulnohumeral joint contact areas were calculated. The center of the contact area and the translation from the position without stress to the position with valgus stress were also calculated. With elbow valgus stress, the contact area changed, and the center of the radiocapitellar joint contact area translated significantly more laterally in the dominant elbow than in the non-dominant elbow (p = 0.0361). In addition, the center of the ulnohumeral joint contact area translated significantly more posteriorly in the dominant elbow than in the non-dominant elbow (p = 0.0413). These changes in contact areas could be the reason for cartilage injury at the posterior trochlea in pitchers with UCL deficiency.


Athletes , Baseball , Elbow Joint/pathology , Elbow Joint/physiopathology , Joint Instability/diagnosis , Joint Instability/physiopathology , Adult , Biomechanical Phenomena , Elbow Joint/diagnostic imaging , Humans , Joint Instability/etiology , Male , Musculoskeletal System , Stress, Mechanical , Tomography, X-Ray Computed , Young Adult
16.
PLoS One ; 16(7): e0253019, 2021.
Article En | MEDLINE | ID: mdl-34237065

BACKGROUND: Although the pedicle is routinely used as a surgical fixation site, the pedicle wall bone area fraction (bone area per unit area) and its distribution at the isthmus of the pedicle remain unknown. The bone area fraction at the pedicle isthmus is an important factor contributing to the strength of pedicle screw constructs. This study investigates the lumbar pedicle wall microstructure based on micro-computed tomography. METHODS: Six fresh-frozen cadaveric lumbar spines were analyzed. Left and right pedicles of each vertebra from L1 to L5 were resected for micro-computed tomography scanning. Data was analyzed with custom-written software to determine regional variation in pedicle wall bone area fraction. The pedicular cross-section was divided into four regions: lateral, medial, cranial, and caudal. The mean bone area fraction values for each region were calculated for all lumbar spine levels. RESULTS: The lateral region showed lower bone area fraction than the medial region at all spinal levels. Bone area fraction in the medial region was the highest at all levels except for L4, and the median values were 99.8% (95.9-100%). There were significant differences between the lateral region and the caudal region at L1, L2 and L3, but none at L4 and L5. The bone area fraction in the lateral region was less than 64% at all spinal levels and that in the caudal region was less than 67% at the L4 and L5 levels. CONCLUSIONS: This study provides initial detailed data on the lumbar pedicle wall microstructure based on micro-computed tomography. These findings may explain why there is a higher incidence of pedicle screw breach in the pedicle lateral and caudal walls.


Lumbar Vertebrae/diagnostic imaging , Aged , Female , Humans , Lumbar Vertebrae/anatomy & histology , Lumbar Vertebrae/ultrastructure , Male , Middle Aged , X-Ray Microtomography/methods
17.
Eur Spine J ; 30(9): 2557-2564, 2021 09.
Article En | MEDLINE | ID: mdl-34268667

PURPOSE: Intervertebral device subsidence is one of the complications of anterior cervical discectomy and fusion. The biomechanical properties of vertebral bony endplate may be related to device subsidence. The aim of this study is to measure the cervical endplate bone density distribution using a novel 3D measurement method. METHODS: Eight human cadaver cervical spines were obtained and levels C3-C7 were dissected and CT scanned. Three-dimensional (3D) CT model was created with the same 3D coordinates of the original DICOM dataset. The regional strength and stiffness of the endplate were determined by indentation testing. The indentation points were recorded by a photograph and the location of the indentation points was projected to the 3D CT model. Three-dimensional coordinates of the indentation point was obtained in the 3D space determined by the DICOM dataset. The area underneath the indentation point was calculated by a trilinear interpolation method directly. Data in HU and correlations with the indentation strength and stiffness were analysed. RESULTS: A positive correlation was found between HU and strength (r = 0.52) and between HU and stiffness (r = 0.41). Overall, mechanical strength and stiffness and HU in the superior endplate of the caudal vertebra were lower than those in the inferior endplate of the cranial vertebra in the same intervertebral disc. CONCLUSIONS: The mechanical properties and the HU were found to be significantly correlated, which employed a novel 3D HU measurement method, thus demonstrating potential to predict cervical endplate failure risk in a clinical setting.


Bone Density , Intervertebral Disc , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Diskectomy , Humans , Tomography, X-Ray Computed
18.
Am J Sports Med ; 49(6): 1505-1511, 2021 05.
Article En | MEDLINE | ID: mdl-33831318

BACKGROUND: Osteochondral allograft transplantation is 1 treatment option for focal articular cartilage defects of the knee. Large irregular defects, which can be treated using an oblong allograft or multiple overlapping allografts, increase the procedure's technical complexity and may provide suboptimal cartilage and subchondral surface matching between donor grafts and recipient sites. PURPOSE: To quantify and compare cartilage and subchondral surface topography mismatch and cartilage step-off for oblong and overlapping allografts using a 3-dimensional simulation model. STUDY DESIGN: Controlled laboratory study. METHODS: Human cadaveric medial femoral hemicondyles (n = 12) underwent computed tomography and were segmented into cartilage and bone components using 3-dimensional reconstruction and modeling software. Segments were then exported into point-cloud models. Modeled defect sizes of 17 × 30 mm were created on each recipient hemicondyle. There were 2 types of donor allografts from each condyle utilized: overlapping and oblong. Grafts were virtually harvested and implanted to optimally align with the defect to provide minimal cartilage surface topography mismatch. Least mean squares distances were used to measure cartilage and subchondral surface topography mismatch and cartilage step-off. RESULTS: Cartilage and subchondral topography mismatch for the overlapping allograft group was 0.27 ± 0.02 mm and 0.80 ± 0.19 mm, respectively. In comparison, the oblong allograft group had significantly increased cartilage (0.62 ± 0.43 mm; P < .001) and subchondral (1.49 ± 1.10 mm; P < .001) mismatch. Cartilage step-off was also found to be significantly increased in the oblong group compared with the overlapping group (P < .001). In addition, overlapping allografts more reliably provided a significantly higher percentage of clinically acceptable (0.5- and 1-mm thresholds) cartilage surface topography matching (overlapping: 100% for both 0.5 and 1 mm; oblong: 90% for 1 mm and 56% for 0.5 mm; P < .001) and cartilage step-off (overlapping: 100% for both 0.5 and 1 mm; oblong: 86% for 1 mm and 12% for 0.5 mm; P < .001). CONCLUSION: This computer simulation study demonstrated improved topography matching and decreased cartilage step-off with overlapping osteochondral allografts compared with oblong osteochondral allografts when using grafts from donors that were not matched to the recipient condyle by size or radius of curvature. These findings suggest that overlapping allografts may be superior in treating large, irregular osteochondral defects involving the femoral condyles with regard to technique. CLINICAL RELEVANCE: This study suggests that overlapping allografts may provide superior articular cartilage surface topography matching compared with oblong allografts and do so in a more reliable fashion. Surgeons may consider overlapping allografts over oblong allografts because of the increased ease of topography matching during placement.


Cartilage, Articular , Allografts , Bone Transplantation , Cartilage, Articular/surgery , Computer Simulation , Computers , Femur/surgery , Humans , Knee Joint
19.
Eur Spine J ; 30(5): 1355-1364, 2021 05.
Article En | MEDLINE | ID: mdl-33651180

PURPOSE: Two-dimensional (2D) analyses of intervertebral disc (IVD) height and foramen measurements following lateral lumbar interbody fusion (LLIF) have been reported. However, three-dimensional (3D) morphometric analysis of intervertebral structure using 3D computed tomography (3D CT) provides increased precision for measuring morphological changes. The purpose of this study was to evaluate 3D changes of lumbar IVD height and foramen diameter in degenerative lumbar disease patients following LLIF. METHODS: Subject-based 3D CT lumbar models were created for 26 patients before and following LLIF. IVD height (whole and five anatomical zones) and foramen diameter (minimum and maximum) were measured based on the model using custom software. The sagittal placement of cages (SPC) and cross-sectional area of the thecal sac (CSA) were measured. Changes in these parameters by LLIF were quantified and statistically analysed. RESULTS: Following LLIF, disc height increased by an average of 2.9 mm (P < 0.01). Post-operative measurements of both minimum and maximum diameters of the foramen were significantly increased by 1.0 mm and 1.9 mm, respectively (P < 0.01). Change in maximum foramen diameter was significantly correlated with change in disc height (P < 0.05). The SPC was significantly correlated with the changes in disc height and foraminal diameters (P < 0.05, respectively). No significant change between the change in disc height and CSA was found. CONCLUSION: This preliminary study quantifies disc height and foramen diameter changes in 3D following LLIF. The presented data provide baseline intervertebral changes for future comparisons with follow-up studies and clinical outcomes. LEVEL OF EVIDENCE I: Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.


Intervertebral Disc , Spinal Fusion , Humans , Lumbar Vertebrae , Lumbosacral Region , Tomography, X-Ray Computed
20.
Clin Case Rep ; 9(2): 1043-1044, 2021 Feb.
Article En | MEDLINE | ID: mdl-33598299

Multiple lung nodules in atopic dermatitis patients may reflect infective endocarditis. Our case underlines the importance of potentially severe infections due to staphylococci associated with atopic dermatitis.

...