Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Virol Methods ; 296: 114244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34302862

RESUMEN

Safety evaluation for the hepatitis E virus (HEV) is required for plasma fractionation products. Plasma-derived HEV (pHEV) is quite unique in that it is associated with a lipid membrane, which, when stripped during manufacturing processes, induces morphological changes in the virus, making it difficult to select proper HEV phenotypes for clearance studies. We developed a convenient system for the preparation of a high titer cell culture-derived HEV (cHEV). In this system, PLC/PRF/5 cells transfected with the wild-type HEV genome generated lipid membrane-associated cHEV for a long period even after cryopreservation. We also examined how this lipid membrane-associated cHEV can be used to verify the robustness of pHEV removal via 19-nm nanofiltration. Sodium-deoxycholate and trypsin (NaDOC/T) treatment not only dissolved lipid but also digested membrane-associated proteins from pHEV and cHEV, making the resulting cHEV particle smaller in size than any pHEV phenotypes generated by ethanol or solvent-detergent treatment in this study. In both 19-nm and 35-nm nanofiltration, cHEV behaved identically to pHEV. These results indicate that cHEV is a useful resource for viral clearance studies in term of availability, and the use of NaDOC/T-treated cHEV ensured robust pHEV removal capacity via 19-nm nanofiltration.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Virus , Técnicas de Cultivo de Célula , Hepatitis E/tratamiento farmacológico , Virus de la Hepatitis E/genética , Humanos , Fenotipo , Plasma
3.
PLoS Pathog ; 16(10): e1008946, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33085724

RESUMEN

During internalization and trafficking, human papillomavirus (HPV) moves from the cell surface to the endosome where the transmembrane protease γ-secretase promotes insertion of the viral L2 capsid protein into the endosome membrane. Protrusion of L2 through the endosome membrane into the cytosol allows the recruitment of cytosolic host factors that target the virus to the Golgi en route for productive infection. How endosome-localized HPV is delivered to γ-secretase, a decisive infection step, is unclear. Here we demonstrate that cytosolic p120 catenin, likely via an unidentified transmembrane protein, interacts with HPV at early time-points during viral internalization and trafficking. In the endosome, p120 is not required for low pH-dependent disassembly of the HPV L1 capsid protein from the incoming virion. Rather, p120 is required for HPV to interact with γ-secretase-an interaction that ensures the virus is transported along a productive route. Our findings clarify an enigmatic HPV infection step and provide critical insights into HPV infection that may lead to new therapeutic strategies against HPV-induced diseases.


Asunto(s)
Alphapapillomavirus/patogenicidad , Cateninas/metabolismo , Infecciones por Papillomavirus/virología , Internalización del Virus , Alphapapillomavirus/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Cápside/metabolismo , Endosomas/metabolismo , Células HeLa/virología , Humanos , Membranas Intracelulares/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/metabolismo , Transporte de Proteínas/fisiología , Virión/metabolismo
4.
Cell Rep ; 27(6): 1666-1674.e4, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067454

RESUMEN

Although flaviviruses co-opt the function of the host endoplasmic reticulum (ER) membrane protein complex (EMC) during infection, a mechanistic explanation for this observation remains unclear. Here, we show that the EMC promotes biogenesis of dengue virus (DENV) and Zika virus (ZIKV) non-structural multi-pass transmembrane proteins NS4A and NS4B, which are necessary for viral replication. The EMC binds to NS4B and colocalizes with the DENV replication organelle. Mapping analysis reveals that the two N-terminal marginally hydrophobic domains of NS4B confer EMC dependency. Furthermore, altering the hydrophobicity of these two marginally hydrophobic domains relieves NS4B's EMC dependency. We demonstrate that NS4B biogenesis, but not its stability, is reduced in EMC-depleted cells. Our data suggest that the EMC acts as a multi-pass transmembrane chaperone required for expression of at least two virally encoded proteins essential for flavivirus infection and point to a shared vulnerability during the viral life cycle that could be exploited for antiviral therapy.


Asunto(s)
Virus del Dengue/metabolismo , Dengue/virología , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/virología , Virus Zika/metabolismo , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/metabolismo , Proteínas no Estructurales Virales/química , Replicación Viral
5.
J Cell Biol ; 217(10): 3545-3559, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006461

RESUMEN

Despite their importance as human pathogens, entry of human papillomaviruses (HPVs) into cells is poorly understood. The transmembrane protease γ-secretase executes a crucial function during the early stages of HPV infection, but the role of γ-secretase in infection and the identity of its critical substrate are unknown. Here we demonstrate that γ-secretase harbors a previously uncharacterized chaperone function, promoting low pH-dependent insertion of the HPV L2 capsid protein into endosomal membranes. Upon membrane insertion, L2 recruits the cytosolic retromer, which enables the L2 viral genome complex to enter the retrograde transport pathway and traffic to the Golgi en route for infection. Although a small fraction of membrane-inserted L2 is also cleaved by γ-secretase, this proteolytic event appears dispensable for HPV infection. Our findings demonstrate that γ-secretase is endowed with an activity that can promote membrane insertion of L2, thereby targeting the virus to the productive infectious pathway.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Cápside/metabolismo , Papillomavirus Humano 16/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Proteínas de la Cápside/genética , Endosomas/genética , Endosomas/metabolismo , Endosomas/patología , Endosomas/virología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Aparato de Golgi/virología , Células HEK293 , Células HeLa , Papillomavirus Humano 16/genética , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patología , Membranas Intracelulares/virología , Chaperonas Moleculares/genética , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Proteolisis
6.
PLoS Pathog ; 13(6): e1006439, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28614383

RESUMEN

The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2) as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Virus 40 de los Simios/fisiología , Internalización del Virus , Línea Celular , Retículo Endoplásmico/virología , Técnicas de Silenciamiento del Gen , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Infecciones por Polyomavirus/metabolismo
7.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28356524

RESUMEN

Membrane penetration by nonenveloped viruses remains enigmatic. In the case of the nonenveloped polyomavirus simian virus 40 (SV40), the virus penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and then traffics to the nucleus to cause infection. We previously demonstrated that the cytosolic Hsc70-SGTA-Hsp105 complex is tethered to the ER membrane, where Hsp105 and SGTA facilitate the extraction of SV40 from the ER and transport of the virus into the cytosol. We now find that Hsc70 also ejects SV40 from the ER into the cytosol in a step regulated by SGTA. Although SGTA's N-terminal domain, which mediates homodimerization and recruits cellular adaptors, is dispensable during ER-to-cytosol transport of SV40, this domain appears to exert an unexpected post-ER membrane translocation function during SV40 entry. Our study thus establishes a critical function of Hsc70 within the Hsc70-SGTA-Hsp105 complex in promoting SV40 ER-to-cytosol membrane penetration and unveils a role of SGTA in controlling this step.IMPORTANCE How a nonenveloped virus transports across a biological membrane to cause infection remains mysterious. One enigmatic step is whether host cytosolic components are co-opted to transport the viral particle into the cytosol. During ER-to-cytosol membrane transport of the nonenveloped polyomavirus SV40, a decisive infection step, a cytosolic complex composed of Hsc70-SGTA-Hsp105 was previously shown to associate with the ER membrane. SGTA and Hsp105 have been shown to extract SV40 from the ER and transport the virus into the cytosol. We demonstrate here a critical role of Hsc70 in SV40 ER-to-cytosol penetration and reveal how SGTA controls Hsc70 to impact this process.


Asunto(s)
Proteínas Portadoras/metabolismo , Citosol/virología , Retículo Endoplásmico/virología , Proteínas del Choque Térmico HSC70/metabolismo , Virus 40 de los Simios/fisiología , Internalización del Virus , Animales , Transporte Biológico/fisiología , Células COS , Proteínas Portadoras/genética , Línea Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica , Células HEK293 , Proteínas del Choque Térmico HSC70/genética , Interacciones Huésped-Patógeno/genética , Humanos , Membranas Intracelulares/virología , Chaperonas Moleculares/metabolismo , ARN Interferente Pequeño
8.
Uirusu ; 67(2): 121-132, 2017.
Artículo en Japonés | MEDLINE | ID: mdl-30369536

RESUMEN

Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.

9.
Elife ; 52016 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-28012275

RESUMEN

Destabilization of a non-enveloped virus generates a membrane transport-competent viral particle. Here we probe polyomavirus SV40 endoplasmic reticulum (ER)-to-cytosol membrane transport, a decisive infection step where destabilization initiates this non-enveloped virus for membrane penetration. We find that a member of the ER membrane protein complex (EMC) called EMC1 promotes SV40 ER membrane transport and infection. Surprisingly, EMC1 does so by using its predicted transmembrane residue D961 to bind to and stabilize the membrane-embedded partially destabilized SV40, thereby preventing premature viral disassembly. EMC1-dependent stabilization enables SV40 to engage a cytosolic extraction complex that ejects the virus into the cytosol. Thus EMC1 acts as a molecular chaperone, bracing the destabilized SV40 in a transport-competent state. Our findings reveal the novel principle that coordinated destabilization-stabilization drives membrane transport of a non-enveloped virus.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Virus 40 de los Simios/fisiología , Internalización del Virus , Animales , Transporte Biológico , Células COS , Células HEK293 , Humanos , Proteínas de la Membrana
10.
Mol Biol Cell ; 27(10): 1650-62, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27030672

RESUMEN

When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170's function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Glicosilación , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Prealbúmina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo
11.
Nat Cell Biol ; 17(12): 1546-55, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26551274

RESUMEN

Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of the unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both the intramembrane hydrophilic residues of IRE1α and the lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and in vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1L(ΔIEC)) are viable and seem normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signalling in vivo by managing its protein turnover.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/genética , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Enterocitos/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/genética , Lectinas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
PLoS Pathog ; 11(8): e1005086, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26244546

RESUMEN

Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.


Asunto(s)
Retículo Endoplásmico/virología , Interacciones Huésped-Parásitos/fisiología , Infecciones por Polyomavirus/metabolismo , Virus 40 de los Simios/patogenicidad , Infecciones Tumorales por Virus/metabolismo , Transporte Biológico/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Transducción de Señal/fisiología , Transfección
13.
J Virol ; 89(17): 8897-908, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085143

RESUMEN

UNLABELLED: The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE: PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Virus 40 de los Simios/patogenicidad , Animales , Virus BK/patogenicidad , Transporte Biológico , Línea Celular , Chlorocebus aethiops , Disulfuros/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Oxidación-Reducción , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología , Proteína Disulfuro Isomerasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología , Internalización del Virus
14.
Mol Biol Cell ; 26(12): 2181-9, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877869

RESUMEN

Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of the Sel1L-binding partner ERdj5. This J protein stimulates BiP's ATPase activity, allowing BiP to capture the toxin. Presumably, toxin release from BiP must occur before retrotranslocation. Here, using loss-and gain-of-function approaches coupled with binding studies, we demonstrate that the ER-resident nucleotide exchange factors (NEFs) Grp170 and Sil1 induce CT release from BiP in order to promote toxin retrotranslocation. In addition, we find that after NEF-dependent release from BiP, the toxin is transferred to protein disulfide isomerase; this ER redox chaperone is known to unfold CTA1, which allows the toxin to cross the Hrd1-Sel1L complex. Our data thus identify two NEFs that trigger toxin release from BiP to enable successful retrotranslocation and clarify the fate of the toxin after it disengages from BiP.


Asunto(s)
Toxina del Cólera/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Toxina del Cólera/farmacología , Chaperón BiP del Retículo Endoplásmico , Retículo Endoplásmico Rugoso/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/efectos de los fármacos , Humanos , Proteína Disulfuro Isomerasas/metabolismo
15.
J Virol ; 89(8): 4069-79, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653441

RESUMEN

UNLABELLED: The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE: PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.


Asunto(s)
Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Membranas Intracelulares/metabolismo , Infecciones por Polyomavirus/fisiopatología , Virus 40 de los Simios/fisiología , Transporte Biológico/fisiología , Citosol/virología , Retículo Endoplásmico/virología , Chaperón BiP del Retículo Endoplásmico , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Humanos , Luciferasas , Reacción en Cadena de la Polimerasa
16.
Biotechnol Rep (Amst) ; 5: 105-111, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28435806

RESUMEN

The icosahedral capsid structure of simian virus 40 (diameter, 45 nm) consists of 72 pentameric subunits, with each subunit formed by five VP1 molecules. Electron microscopy, immuno-gold labeling, and ζ-potential analysis showed that purified recombinant VP1 pentamers covered polystyrene beads measuring 100, 200, and 500 nm in diameter, as well as silica beads. In addition to covering spherical beads, VP1 pentamers covered cubic magnetite beads, as well as the distorted surface structures of liposomes. These findings indicate that VP1 pentamers could coat artificial beads of various shapes and sizes larger than the natural capsid. Technology based on VP1 pentamers may be useful in providing a capsid-like surface for enclosed materials, enhancing their stability and cellular uptake for drug delivery systems.

17.
PLoS Pathog ; 10(3): e1004007, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675744

RESUMEN

Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Infecciones por Polyomavirus/metabolismo , Virus 40 de los Simios/fisiología , Animales , Línea Celular , Cromatografía en Gel , Humanos , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Microscopía Fluorescente , ARN Interferente Pequeño , Transfección
18.
Mol Biol Cell ; 24(22): 3545-56, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24068323

RESUMEN

Endoplasmic reticulum (ER) membrane-bound E3 ubiquitin ligases promote ER-associated degradation (ERAD) by ubiquitinating a retro-translocated substrate that reaches the cytosol from the ER, targeting it to the proteasome for destruction. Recent findings implicate ERAD-associated deubiquitinases (DUBs) as positive and negative regulators during ERAD, reflecting the different consequences of deubiquitinating a substrate prior to proteasomal degradation. These observations raise the question of whether a DUB can control the fate of a nonubiquitinated ERAD substrate. In this study, we probed the role of the ERAD-associated DUB, YOD1, during retro-translocation of the nonubiquitinated cholera toxin A1 (CTA1) peptide, a critical intoxication step. Through combining knockdown, overexpression, and binding studies, we demonstrated that YOD1 negatively controls CTA1 retro-translocation, likely by deubiquitinating and inactivating ubiquitinated ERAD components that normally promote toxin retro-translocation. YOD1 also antagonizes the proteasomal degradation of nonglycosylated pro-α factor, a postulated nonubiquitinated yeast ERAD substrate, in mammalian cells. Our findings reveal that a cytosolic DUB exerts a negative function during retro-translocation of nonubiquitinated substrates, potentially by acting on elements of the ERAD machinery.


Asunto(s)
Endopeptidasas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Retículo Endoplásmico/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Tioléster Hidrolasas/metabolismo , Ubiquitina/metabolismo , Toxina del Cólera/metabolismo , Citosol/metabolismo , Endopeptidasas/genética , Retículo Endoplásmico/enzimología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Proteolisis , Transducción de Señal , Tioléster Hidrolasas/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
J Biotechnol ; 167(1): 8-15, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23791947

RESUMEN

Artificial beads including magnetite and fluorescence particles are useful to visualize pathologic tissue, such as cancers, from harmless types by magnetic resonance imaging (MRI) or fluorescence imaging. Desirable properties of diagnostic materials include high dispersion in body fluids, and the ability to target specific tissues. Here we report on the development of novel magnetic nanoparticles (MNPs) intended for use as diagnosis and therapy that are coated with viral capsid protein VP1-pentamers of simian virus 40, which are monodispersive in body fluid by conjugating epidermal growth factor (EGF) to VP1. Critically, the coating of MNPs with VP1 facilitated stable dispersion of the MNPs in body fluids. In addition, EGF was conjugated to VP1 coating on MNPs (VP1-MNPs). EGF-conjugated VP1-MNPs were successfully used to target EGF receptor-expressing tumor cells in vitro. Thus, using viral capsid protein VP1 as a coating material would be useful for medical diagnosis and therapy.


Asunto(s)
Proteínas de la Cápside/química , Factor de Crecimiento Epidérmico/química , Nanopartículas/química , Animales , Proteínas de la Cápside/administración & dosificación , Línea Celular Tumoral , Ácido Cítrico/química , Factor de Crecimiento Epidérmico/administración & dosificación , Receptores ErbB/metabolismo , Humanos , Hierro/sangre , Fenómenos Magnéticos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Suero/química
20.
Mol Biol Cell ; 24(6): 785-95, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23363602

RESUMEN

Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin's catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident factor ERdj5 promotes CTA1 retrotranslocation, in part, via its J domain. This Hsp70 cochaperone regulates binding between CTA and the ER Hsp70 BiP, a chaperone previously implicated in toxin retrotranslocation. Importantly, ERdj5 interacts with the Hrd1 adaptor Sel1L directly through Sel1L's N-terminal lumenal domain, thereby linking ERdj5 to the Hrd1 complex. Sel1L itself also binds CTA and facilitates toxin retrotranslocation. By contrast, EDEM1 and OS-9, two established Sel1L binding partners, do not play significant roles in CTA1 retrotranslocation. Our results thus identify two ER factors that promote ER-to-cytosol transport of CTA1. They also indicate that ERdj5, by binding to Sel1L, triggers BiP-toxin interaction proximal to the Hrd1 complex. We postulate this scenario enables the Hrd1-associated retrotranslocation machinery to capture the toxin efficiently once the toxin is released from BiP.


Asunto(s)
Toxina del Cólera/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Oligopéptidos/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Anticuerpos/inmunología , Línea Celular , Toxina del Cólera/química , Toxina del Cólera/toxicidad , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas , Proteínas/genética , Proteínas/inmunología , Interferencia de ARN , ARN Interferente Pequeño , Vibrio cholerae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...