Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 21(44): 24506-24511, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31663089

RESUMEN

As molecular spectroscopy makes its comeback to the limelight of fundamental sciences, scientists need ever better coherent light sources and diagnostic methods. Of particular importance for molecular spectroscopy is the mid infrared spectral region, where strong and narrow ro-vibrational excitations have their fundamental transition frequencies. Unfortunately, much technology in some portions of this spectral region is still rather pioneering. Here we present a high-resolution spectroscopy experiment, based on a molecular beam setup, which pushes the measured linewidth close to the transit time limit, on the order of 100 kHz. Moreover, we discuss the issue of frequency-noise characterization and the linewidth measurement of the ultrastable infrared laser used in the experiment.

2.
Sci Rep ; 7(1): 12780, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986590

RESUMEN

High-resolution spectroscopy in the 1-10 µm region has never been fully tackled for the lack of widely-tunable and practical light sources. Indeed, all solutions proposed thus far suffer from at least one of three issues: they are feasible only in a narrow spectral range; the power available for spectroscopy is limited; the frequency accuracy is poor. Here, we present a setup for high-resolution spectroscopy, whose approach can be applied in the whole 1-10 µm range. It combines the power of quantum cascade lasers (QCLs) and the accuracy achievable by difference frequency generation using an orientation patterned GaP crystal. The frequency is measured against a primary frequency standard using the Italian metrological fibre link network. We demonstrate the performance of the setup by measuring a vibrational transition in a highly-excited metastable state of CO around 6 µm with 11 digits of precision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA