Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Phys Rev Lett ; 131(16): 163201, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37925726

X-ray diffraction of silicon irradiated with tightly focused femtosecond x-ray pulses (photon energy, 11.5 keV; pulse duration, 6 fs) was measured at various x-ray intensities up to 4.6×10^{19} W/cm^{2}. The measurement reveals that the diffraction intensity is highly suppressed when the x-ray intensity reaches of the order of 10^{19} W/cm^{2}. With a dedicated simulation, we confirm that the observed reduction of the diffraction intensity can be attributed to the femtosecond change in individual atomic scattering factors due to the ultrafast creation of highly ionized atoms through photoionization, Auger decay, and subsequent collisional ionization. We anticipate that this ultrafast reduction of atomic scattering factor will be a basis for new x-ray nonlinear techniques, such as pulse shortening and contrast variation x-ray scattering.

2.
Struct Dyn ; 10(5): 054502, 2023 Sep.
Article En | MEDLINE | ID: mdl-37901681

Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics.

3.
Science ; 382(6666): 69-72, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37796999

The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.

4.
Opt Lett ; 48(19): 5041-5044, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37773380

Damage thresholds and structures on a metal aluminum and an aluminum oxide crystal induced by the soft x-ray free electron laser irradiations were evaluated. Distinctive differences in damage thresholds and structures were observed for these materials. On the aluminum oxide crystal surface, in particular, a novel, to the best of our knowledge, surface processing, which we suggest defining as "peeling," was recognized. Surface structures formed by peeling had extremely shallow patterning of sub-nanometer depth. For the newly observed peeling process, we proposed a scission of chemical bond, i.e., binding energy model, in the crystal.

6.
Sci Rep ; 13(1): 13796, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37652921

Over the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials. Therefore, the properties of this shock wave may be different from those of conventional shock waves. However, the lattice behaviour under femtosecond laser-driven shock compression has never been elucidated. Here we report the ultrafast lattice behaviour in iron shocked by direct irradiation of a femtosecond laser pulse, diagnosed using X-ray free electron laser diffraction. We found that the initial compression state caused by the femtosecond laser-driven shock wave is the same as that caused by conventional shock waves. We also found, for the first time experimentally, the temporal deviation of peaks of stress and strain waves predicted theoretically. Furthermore, the existence of a plastic wave peak between the stress and strain wave peaks is a new finding that has not been predicted even theoretically. Our findings will open up new avenues for designing novel materials that combine strength and toughness in a trade-off relationship.

7.
Nat Commun ; 14(1): 4262, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37460582

High sensitivity of the Kß fluorescence spectrum to electronic state is widely used to investigate spin and oxidation state of first-row transition-metal compounds. However, the complex electronic structure results in overlapping spectral features, and the interpretation may be hampered by ambiguity in resolving the spectrum into components representing different electronic states. Here, we tackle this difficulty with a nonlinear resonant inelastic X-ray scattering (RIXS) scheme, where we leverage sequential two-photon absorption to realize an inverse process of the Kß emission, and measure the successive Kα emission. The nonlinear RIXS reveals two-dimensional (2D) Kß-Kα fluorescence spectrum of copper metal, leading to better understanding of the spectral feature. We isolate 3d-related satellite peaks in the 2D spectrum, and find good agreement with our multiplet ligand field calculation. Our work not only advances the fluorescence spectroscopy, but opens the door to extend RIXS into the nonlinear regime.

8.
Optica ; 10(4): 513-519, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-38239819

X-ray free-electron lasers (XFELs) provide intense pulses that can generate stimulated X-ray emission, a phenomenon that has been observed and studied in materials ranging from neon to copper. Two schemes have been employed: amplified spontaneous emission (ASE) and seeded stimulated emission (SSE), where a second color XFEL pulse provides the seed. Both phenomena are currently explored for coherent X-ray laser sources and spectroscopy. Here, we report measurements of ASE and SSE of the 5.9 keV Mn Kα1 fluorescence line from a 3.9 molar NaMnO4 solution, pumped with 7 femtosecond FWHM XFEL pulses at 6.6 keV. We observed ASE at a pump pulse intensity of 1.7 × 1019 W/cm2, consistent with earlier findings. We observed SSE at dramatically reduced pump pulse intensities down to 1.1 × 1017 W/cm2. These intensities are well within the range of many existing XFEL instruments, which supports the experimental feasibility of SSE as a tool to generate coherent X-ray pulses, spectroscopic studies of transition metal complexes, and other applications.

9.
Sci Adv ; 8(35): eabo0617, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36054354

Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.

10.
Phys Rev Lett ; 128(22): 223203, 2022 Jun 03.
Article En | MEDLINE | ID: mdl-35714226

Transient structural changes of Al_{2}O_{3} on subatomic length scales following irradiation with an intense x-ray laser pulse (photon energy: 8.70 keV; pulse duration: 6 fs; fluence: 8×10^{2} J/cm^{2}) have been investigated by using an x-ray pump x-ray probe technique. The measurement reveals that aluminum and oxygen atoms remain in their original positions by ∼20 fs after the intensity maximum of the pump pulse, followed by directional atomic displacements at the fixed unit cell parameters. By comparing the experimental results and theoretical simulations, we interpret that electron excitation and relaxation triggered by the pump pulse modify the potential energy surface and drives the directional atomic displacements. Our results indicate that high-resolution x-ray structural analysis with the accuracy of 0.01 Å is feasible even with intense x-ray pulses by making the pulse duration shorter than the timescale needed to complete electron excitation and relaxation processes, which usually take up to a few tens of femtoseconds.

11.
J Synchrotron Radiat ; 29(Pt 3): 862-865, 2022 May 01.
Article En | MEDLINE | ID: mdl-35511018

A simple spectrometer using diffraction from diamond microcrystals has been developed to diagnose single-shot spectra of X-ray free-electron laser (XFEL) pulses. The large grain size and uniform lattice constant of the adopted crystals enable characterizing the XFEL spectrum at a resolution of a few eV from the peak shape of the powder diffraction profile. This single-shot spectrometer has been installed at beamline 3 of SACLA and is used for daily machine tuning.

12.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Article En | MEDLINE | ID: mdl-35290124

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

13.
Sci Rep ; 12(1): 2237, 2022 Feb 09.
Article En | MEDLINE | ID: mdl-35140299

This study evaluates phase transformation kinetics under ultrafast cooling using femtosecond X-ray diffraction for the operand measurements of the dislocation densities in Fe-0.1 mass% C-2.0 mass% Mn martensitic steel. To identify the phase transformation mechanism from austenite (γ) to martensite (α'), we used an X-ray free-electron laser and ultrafast heating and cooling techniques. A maximum cooling rate of 4.0 × 103 °C s-1 was achieved using a gas spraying technique, which is applied immediately after ultrafast heating of the sample to 1200 °C at a rate of 1.2 × 104 °C s-1. The cooling rate was sufficient to avoid bainitic transformation, and the transformation during ultrafast cooling was successfully observed. Our results showed that the cooling rate affected the dislocation density of the γ phase at high temperatures, resulting in the formation of a retained γ owing to ultrafast cooling. It was discovered that Fe-0.1 mass% C-2.0 mass% Mn martensitic steels may be in an intermediate phase during the phase transformation from face-centered-cubic γ to body-centered-cubic α' during ultrafast cooling and that lattice softening occurred in carbon steel immediately above the martensitic-transformation starting temperature. These findings will be beneficial in the study, development, and industrial utilization of functional steels.

14.
Phys Rev Lett ; 127(16): 163903, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34723578

To shorten the duration of x-ray pulses, we present a nonlinear optical technique using atoms with core-hole vacancies (core-hole atoms) generated by inner-shell photoionization. The weak Coulomb screening in the core-hole atoms results in decreased absorption at photon energies immediately above the absorption edge. By employing this phenomenon, referred to as saturable absorption, we successfully reduce the duration of x-ray free-electron laser pulses (photon energy: 9.000 keV, duration: 6-7 fs, fluence: 2.0-3.5×10^{5} J/cm^{2}) by ∼35%. This finding that core-hole atoms are applicable to nonlinear x-ray optics is an essential stepping stone for extending nonlinear technologies commonplace at optical wavelengths to the hard x-ray region.

15.
Opt Express ; 29(21): 33121-33133, 2021 Oct 11.
Article En | MEDLINE | ID: mdl-34809130

Although laser irradiation with femtosecond pulses is known to generate crystallization and morphological changes, the contribution of optical parameters to material changes is still in discussion. Here, we compare two structures irradiated near Si-L2,3 edges by an extreme ultraviolet femtosecond pulse. Our result implies that, despite the femtosecond irradiation regime, these values of the optical attenuation length between the wavelengths of 10.3-nm and 13.5-nm differ by one order of magnitude. From the structural comparison, the original crystalline state was maintained upon irradiation at 13.5-nm, on the other hand, transition to an amorphous state occurred at 10.3-nm. The difference in optical attenuation length directly influence to the decision of material crystallization or morphological changes, even if the irradiation condition is under the femtosecond regime and same pulse duration. Our result reveals the contribution of optical attenuation length in ultrafast laser-induced structural change.

16.
Rev Sci Instrum ; 92(5): 053534, 2021 May 01.
Article En | MEDLINE | ID: mdl-34243311

A new method of spatially resolved single-shot absorption spectroscopy for an x-ray free electron laser (XFEL) pulse has been developed by using a dispersive spectrometer and an elliptical mirror to enhance the spatial resolution. As a demonstration, we performed x-ray absorption near-edge structure measurement of Cu with a pump-probe scheme combining an XFEL pulse and a high-power femtosecond laser pulse. In the experiment, changes of an absorption spectrum in a plasma generated with a laser shot were successfully observed. The method will be a powerful tool for experiments requiring a spatial resolution and/or a single-shot measurement, such as high energy density science using a high-power laser pulse.

17.
Nat Commun ; 12(1): 4305, 2021 Jul 14.
Article En | MEDLINE | ID: mdl-34262045

Meteorites from interplanetary space often include high-pressure polymorphs of their constituent minerals, which provide records of past hypervelocity collisions. These collisions were expected to occur between kilometre-sized asteroids, generating transient high-pressure states lasting for several seconds to facilitate mineral transformations across the relevant phase boundaries. However, their mechanisms in such a short timescale were never experimentally evaluated and remained speculative. Here, we show a nanosecond transformation mechanism yielding ringwoodite, which is the most typical high-pressure mineral in meteorites. An olivine crystal was shock-compressed by a focused high-power laser pulse, and the transformation was time-resolved by femtosecond diffractometry using an X-ray free electron laser. Our results show the formation of ringwoodite through a faster, diffusionless process, suggesting that ringwoodite can form from collisions between much smaller bodies, such as metre to submetre-sized asteroids, at common relative velocities. Even nominally unshocked meteorites could therefore contain signatures of high-pressure states from past collisions.

18.
Phys Rev Lett ; 126(11): 117403, 2021 Mar 19.
Article En | MEDLINE | ID: mdl-33798368

Ultrafast changes of charge density distribution in diamond after irradiation with an intense x-ray pulse (photon energy, 7.8 keV; pulse duration, 6 fs; intensity, 3×10^{19} W/cm^{2}) have been visualized with the x-ray pump-x-ray probe technique. The measurement reveals that covalent bonds in diamond are broken and the electron distribution around each atom becomes almost isotropic within ∼5 fs after the intensity maximum of the x-ray pump pulse. The 15 fs time delay observed between the bond breaking and atomic disordering indicates nonisothermality of electron and lattice subsystems on this timescale. From these observations and simulation results, we interpret that the x-ray-induced change of the interatomic potential drives the ultrafast atomic disordering underway to the following nonthermal melting.

19.
J Synchrotron Radiat ; 28(Pt 1): 372, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33399589

Corrections to equations and experimental results in the paper by Inoue et al. [(2019). J. Synchrotron Rad. 26, 2050-2054] are made.

20.
Sci Rep ; 10(1): 10197, 2020 Jun 23.
Article En | MEDLINE | ID: mdl-32576908

SiO2 is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 ME). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P42/mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood. Here, laser-induced shock compression experiments at the LCLS- and SACLA XFEL light-sources elucidate the high-pressure behavior of stishovite on the lattice-level under in situ conditions on the Hugoniot to pressures above 300 GPa. We find stishovite is still (meta-)stable at these conditions, and does not undergo any phase transitions. This contradicts static experiments showing structural transformations to the CaCl2, α-PbO2 and pyrite-type structures. However, rate-limited kinetic hindrance may explain our observations. These results are important to our understanding into the validity of EOS data from nanosecond experiments for geophysical applications.

...